Skip to main content

Table 4 Comparison of the efficacy of ResNet, DenseNet, Vision Transformer, Swin Transformer and SA in identifying benign and malignant ovarian tumors

From: Machine learning models in evaluating the malignancy risk of ovarian tumors: a comparative study

Model

AUC

Sensitivity

Specificity

NPV

PPV

Youden index

Cutoff

+LR

-LR

DOR

 

ResNet

0.91 (0.85 - 0.95)

82.1 (60.7 - 88.9)

93.4 (87.5 - 97.1)

99.6 (99.2 - 99.8)

20.3 (7.2 - 45.7)

0.75

>0.58

11.73

0.25

46.92

 

DenseNet

0.91 (0.86 - 0.95)

84.6 (69.5 - 94.1)

92.6 (86.5 - 96.6)

99.7 (99.3 - 99.8)

26.0 (8.1 - 58.4)

0.77

>0.25

11.47

0.17

67.47

 

Vision Transformer

0.87 (0.81 - 0.92)

84.6 (69.5 - 94.1)

81.2 (73.1 - 87.7)

99.6 (99.2 - 99.8)

8.4 (4.5 - 15.1)

0.66

>0.17

4.49

0.19

23.63

 

Swin Transformer

0.92 (0.87 - 0.96)

87.2 (72.6 - 95.7)

94.3 (88.5 - 97.7)

99.7 (99.4 - 99.9)

23.7 (7.9 - 52.7)

0.81

>0.33

15.19

0.14

108.5

 

SA

0.97 (0.93 - 0.99)

87.2 (72.6 - 95.7)

98.4 (94.2 - 99.8)

99.7 (99.4 - 99.9)

52.0 (8.7 - 92.5)

0.86

>3

53.18

0.13

409.08