Skip to main content

Table 5 Comparison of the efficacy of ResNet, DenseNet, Vision Transformer and Swin Transformer in identifying benign and malignant ovarian tumors with or without CA125

From: Machine learning models in evaluating the malignancy risk of ovarian tumors: a comparative study

 

AUC

Sensitivity

Specificity

NPV

PPV

Youden index

Cutoff value

DOR

P value

ResNet

0.91(0.85–0.95

82.1(60.7–88.9)

93.4(87.5–97.1)

99.6(99.2–99.8)

20.3(7.2–45.7)

0.75

> 0.58

46.92

 

ResNet + CA125

0.90(0.84–0.94)

82.1(66.5–92.5)

93.4(87.5–97.1)

99.6(99.2–99.8)

20.3(7.2–45.7)

0.75

> 0.38

65.84

0.29

DenseNet

0.91(0.86–0.95)

84.6(69.5–94.1)

92.6(86.5–96.6)

99.7(99.3–99.8)

26.0(8.1–58.4)

0.77

> 0.25

67.47

 

DenseNet + CA125

0.91(0.85–0.95)

84.6(69.5–94.1)

95.9(90.7–98.7)

99.7(99.3–99.8)

29.6(8.4–65.9)

0.81

> 0.18

129.06

0.53

Vision Transformer

0.87(0.81–0.92)

84.6(69.5–94.1)

81.2(73.1–87.7)

99.6(99.2–99.8)

8.4(4.5–15.1)

0.66

> 0.17

23.63

 

Vision Transformer + CA125

0.87(0.81–0.92)

84.6(69.5–94.1)

79.5(71.3–86.3)

99.6(99.2–99.8)

7.8(4.3–13.7)

0.64

> 0.11

21.74

0.71

Swin Transformer

0.92(0.87–0.96)

87.2(72.6–95.7)

94.3(88.5–97.7)

99.7(99.4–99.9)

23.7(7.9–52.7)

0.81

> 0.33

108.50

 

Swin Transformer + CA125

0.93(0.88–0.97)

87.2(72.6–95.7)

94.3(88.5–97.7)

99.7(99.4–99.9)

23.7(7.9–52.7)

0.81

> 0.25

108.50

0.23

SA

0.97(0.93–0.99)

87.2(72.6–95.7)

98.4(94.2–99.8)

99.7(99.4–99.9)

52.0(8.7–92.5)

0.86

> 3

409.08