Skip to main content

Table 3 Performance of 7 machine learning models

From: A metabolic fingerprint of ovarian cancer: a novel diagnostic strategy employing plasma EV-based metabolomics and machine learning algorithms

 

Algorithms

 

RF

ANN

NB

KNN

SVM

DT

LR

OC vs CON

 AUC

0.91

0.90

0.90

0.87

0.88

0.80

0.61

 Sensitivity

0.92

0.83

0.67

0.75

0.67

0.67

0.58

 Specificity

0.78

0.78

0.89

0.78

0.78

0.78

0.56

 PPV

0.85

0.83

0.89

0.82

0.80

0.80

0.64

 NPV

0.88

0.78

0.67

0.70

0.64

0.64

0.50

 Precision

0.85

0.83

0.89

0.82

0.80

0.80

0.64

 F1

0.88

0.83

0.76

0.78

0.73

0.73

0.61

OC vs BE

 AUC

0.86

0.80

0.83

0.86

0.94

0.69

0.73

 Sensitivity

0.80

0.60

0.80

1.00

0.80

0.80

0.80

 Specificity

0.86

0.86

0.71

0.86

0.86

0.57

0.71

 PPV

0.80

0.75

0.67

0.83

0.80

0.57

0.67

 NPV

0.86

0.75

0.83

1.00

0.86

0.80

0.83

 Precision

0.80

0.75

0.67

0.83

0.80

0.57

0.67

 F1

0.80

0.67

0.73

0.91

0.80

0.67

0.73