Skip to main content

Table 3 Performance of seven machine learning-based models for predicting live birth in the testing set

From: Construction and evaluation of machine learning-based prediction model for live birth following fresh embryo transfer in IVF/ICSI patients with polycystic ovary syndrome

Model

AUC

Accuracy

Precision

Sensitivity

Specificity

PPV

NPV

F1 score

Brier score

DT

0.773

0.679

0.669

0.619

0.738

0.669

0.694

0.643

0.194

KNN

0.719

0.643

0.594

0.581

0.705

0.594

0.694

0.587

0.258

LGBM

0.705

0.642

0.605

0.551

0.732

0.605

0.687

0.551

0.215

NBM

0.764

0.720

0.671

0.691

0.749

0.671

0.765

0.577

0.207

RF

0.794

0.702

0.669

0.64

0.765

0.669

0.741

0.654

0.184

SVM

0.806

0.266

0.202

0.243

0.29

0.202

0.34

0.221

0.461

XGB

0.822

0.752

0.682

0.772

0.732

0.682

0.812

0.724

0.172

  1. Note: DT, decision tree; KNN, k-nearest neighbors; LGBM, light gradient boosting machine; NBM, naïve bayes model; RF, random forest; SVM, Support Vector Machine; XGB, eXtreme gradient boosting; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value