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Abstract
Development of mouse models representing human spontaneous ovarian cancer has been
hampered by the lack of understanding of the etiology of this very complex disease. Mouse models
representing the different types of ovarian cancer are needed to understand how epithelial ovarian
cancer differs from granulosa cell tumors. Many different methods have been used to generate a
viable genetic model with limited success. This review focuses on the methods of various
investigators and the limitations of each model in establishing a reproducible and inheritable line to
study this disease.

Introduction
Ovarian cancer (OC) is the most lethal malignancy of the
female reproductive system and the fifth leading cause of
cancer death in women [1]. Ninety percent of OC are
thought to arise from the epithelium and its inclusion
cysts [2] due to multiple genetic changes [3]. However, the
etiology of spontaneous epithelial (E)OC is poorly under-
stood, partially due to a lack of an appropriate experimen-
tal model. While many approaches have been used,
model development has been hampered by the absence of
a specific promoter for the ovaries, as many promoters are
sufficiently leaky. Numerous investigators have sought to
develop a model that would effectively represent sponta-
neous human EOC. This review focuses on the methods
various investigators have employed and the limitations
of each murine model in establishing a reproducible,
inheritable line to study this disease.

Carcinogen induced tumor models
As early as 1969, ovarian tumors were induced by direct
application of chemical carcinogens [4]. While 7,12-
Dimethylbenz(a)anthracene (DMBA) had been used in

1970 to induce tumorigenesis in guinea pigs [5], a DMBA-
coated suture was used in 1984 to induce ovarian tumor-
igenesis with only one of thirty-five mice developing an
epithelial carcinoma [6]. However, despite these discour-
aging results, Nishita et al. [7] replicated this experiment
by directly applying DMBA to the rat ovary using a coated
suture. Nearly fifty percent of the rats developed ovarian
tumors in 36 weeks, most of which were carcinomas.
Unfortunately, DMBA also stimulated the epithelial sur-
face of the fallopian tube, endometrium, and cervix to
induce neoplastic transformation.

Other chemical carcinogens used to induce ovarian tumor-
igenesis include 20-methylcholanthrene, 1,3-butadiene,
formic acid 2- [4-(5-nitro-2-furyl)-2-thiazolyl]hydrazide, a
nitrofuran antibiotic, and N-methyl-N'-nitrosourea, a
direct-acting alkylating agent [8-10]. To date, chemical car-
cinogens have not been associated with OC etiology [11].

Syngeneic ovarian epithelial tumor models
Syngeneic models combine in vitro and in vivo methods to
generate a tumor model. Briefly, mouse ovarian surface
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epithelial (MOSE) cells are isolated from the ovaries of
virgin wildtype mice and cultured in vitro before trans-
plantation into recipient mice [12]. Development of the
mouse model was predicated on the work by Godwin et
al. [13] and Testa et al. [14] on the spontaneous transfor-
mation of surface epithelial cells isolated from rats.

Roby et al. [12] established the technique of isolating and
culturing MOSE cells, showing that MOSE cells can spon-
taneously transform in vitro with repeated passages and
have tumorigenic capacity as they formed tumors and
hemorrhagic ascitic fluid upon injection into athymic and
C57Bl/6 receipt mice. This technique has been used by
numerous investigators for subsequent studies [15-20].

Perhaps one of the most revealing MOSE studies was con-
ducted by Roberts et al. [15], who compared the altera-
tions of the actin cytoskeleton as well as expression of
cellular adhesion proteins versus the number of passages
to study the progression of ovarian carcinogenesis, show-
ing that MOSE cells spontaneously transform with
repeated passages. Late passage cells injected intraperito-
neally into immunocompetent C57BL6 mice formed
tumors in numerous organs, showing the transformation
from a premalignant to a highly malignant phenotype
with downregulation of E-cadherin and connexin-43.

Greenaway et al. [16] injected a spontaneously tumori-
genic MOSE cell line, ID8, into the ovarian bursal cavity
of C57Bl6 mice. The ID8 cells formed direct contact with
the ovarian stroma, resulting in primary tumor formation,
secondary peritoneal carcinomatosis, and extensive
ascites fluid production between 80 to 90 days post-expo-
sure. The cytological and architectural features resembled
serous carcinoma. Interaction between ID8 cells and the
ovarian stroma resulted in increased expression of prolif-
erative and survival markers, including phosphorylated
Akt, proliferating cell nuclear antigen (PCNA), and Bcl-2.
Vascular endothelial growth factor (VEGF) levels were
also increased in the serum and ascitic fluid. In conjunc-
tion, the pro-apoptotic factor Bax was decreased. The
study supports the theory that the ovarian surface epithe-
lium (OSE) can undergo invaginations and form inclu-
sion cysts capable of undergoing neoplastic
transformation [21].

Genetically induced ovarian epithelial tumor models
One of the first reports to test genetic changes was made
by Orsulic et al. [22], who used an avian retroviral delivery
system. Transgenic mice were established to express the
TVA virus receptor making them susceptible to infection
to a subgroup of replication-competent avian leukosis
viral-derived vectors (RCAS), thus allowing for the intro-
duction of oncogenes that would integrate newly reverse-
transcribed DNA into the host genome and allow long-
term expression. The TVA receptor was placed under con-

trol of the keratin 5 promoter to direct expression to the
ovarian epithelium or under control of the β-actin pro-
moter to direct expression to all cells of the ovary. TVA-
transgenic mice were crossbred with p53-/-mice to gener-
ate TVA/p53-/-, which were used to study the oncogenes c-
myc, K-ras, and Akt individually and in combination.
However, the keratin 5 promoter is constitutively active in
the basal layer of stratified and simple epithelia in several
organs [23]; therefore, it was necessary to isolate the
expression of the virally delivered oncogenes. The ovaries
were removed from the TVA/p53-/- mice, cultured, and
infected in vitro before introduction into recipient mice
either by subcutaneous or intraperitoneal injection or by
transplantation under the ovarian bursa. Once infected,
the mammalian cells would not produce detectable levels
of infectious viral particles, which limited spreading to the
surrounding tissue. Introduction of any two oncogenes in
keratin 5-TVA/p53-/- ovarian cells was sufficient to drive
tumorigenesis. While providing valuable insight into the
genetics of tumorigenesis, this methodology is cumber-
some at best. Because transplantation and in vitro manip-
ulation are required, it is not possible to generate a stable
transgenic line with an inheritable form of EOC.

Connolly et al. [24] used a novel approach to target sim-
ian virus 40 T antigen (SV40 TAg) to the epithelial ovarian
surface by using the Mullerian Inhibitory Substance Type
II Receptor (MISIIR) promoter. The Mullerian duct in the
8-week old embryo gives rise to female reproductive
organs, including the fallopian tubes, uterus, and upper
vagina. By linking the MISIIR promoter to the SV40 TAg,
they were able to target expression of SV40 TAg to the epi-
thelium of the female reproductive tract by microinjection
of this construct into the male pronucleus of 0.5-day old
embryos to generate transgenic animals. While 18 of 36
(50%) transgenic mice developed bilateral ovarian
tumors resembling serous carcinomas by 6 to 13 weeks of
age, the aggressiveness of this formation inhibited repro-
duction, making it extremely difficult to establish a trans-
genic line via the female founders. Two individual
transgenic mice also developed a uterine mass and
enlarged polycystic kidneys, respectively, possibly due to
recombination events during transgenic mouse produc-
tion. Not unexpectedly, 7 of 25 (28%) transgenic animals
developed testicular cancer. Intrapleural invasion of
tumors into the omentum, the mesentery, and visceral
and parietal pleura was also observed, possibly due to the
invasiveness of the ovarian tumors. However, SV40 TAg is
not known to be a genetic contributor to ovarian carcino-
genesis [3,25,26]. Yet despite these limitations, this model
has been used for further experiments by establishing a
transgenic line through the male founder [27,28].

Models that require either ex vivo manipulation or expres-
sion of a transgene during embryonic development do not
accurately represent human EOC, which tends to be spon-
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taneous in post-menopausal women. In an effort to
mimic spontaneous EOC development, Flesken-Nikitin et
al. [29] obtained mice from Anton Berns [30,31] with
LoxP sites containing p53 and Rb alleles to assess gene
inactivation in the initiation of EOC. Mice were
homozygous for the mutation and crossbred to generate
p53floxP/floxPRb1floxP/floxP. To assess the efficiency of Cre
recombinase (Cre) expression derived by the cytomegalo-
virus (CMV) promoter, the ovaries were removed and cul-
tured prior to exposure to adenovirus infection.
Adenoviruses carrying CMV-enhanced fluorescent green pro-
tein (AdCMVEGFP) were used as a control against adeno-
viruses carrying CMV-Cre (AdCMVCre). Administration of
AdCMVCre resulted in increased cell proliferation
assessed by BrdU incorporation. To detect the feasibility
in targeting the ovarian bursal cavity in the mouse, AdC-
MVEGFP was administered. It was detected only in the
OSE for 21 days, as expected with a transient adenovirus
infection. As a result of both p53 and Rb inactivation, 33
of 34 mice succumbed to ovarian tumors at a median of
227 days. However, administration of an adenovirus to
achieve the desired results is cumbersome without gener-
ating a reproductive line that would spontaneously form
tumors. Targeting the ovarian bursal cavity is difficult at
best, making this model not a feasible choice for large-
scale applications.

While the previous models developed tumors resembling
human serous adenomas, Dinulescu et al. [32] generated
mice that have a transcriptionally silent oncogenic allele
of K-ras (LSL-K-rasG12D/+) as first developed by Tyler Jacks
[33-35], which can be conditionally expressed through
administration of an adenovirus containing Cre. While
the LSL-K-rasG12D/+ mice formed benign endometrosis-like
lesions and benign lesion within the OSE upon K-ras acti-
vation, the mice did not form ovarian carcinomas. How-
ever, when the LSL-K-rasG12D/+ mice were crossed with
PTENloxP/loxP mice, they developed invasive primary ovar-
ian endometrioid adenocarcinomas (OEA), a subtype of
EOC, suggesting that phosphate and tensin homologue
deletion on chromosome 10 (PTEN) plays a role in tum-
origenesis when combined with other oncogenes. This
finding is consistent with PTEN deletion or mutation in
other cancer types including endometrium, breast, thy-
roid, intestines, prostate, lung, liver, and T-cell lympho-
mas [36-40]. Concurrent K-ras and PTEN mutations have
also been found in complex endometrial hyperplasias, the
precursor type of uterine endometrioid adenocarcinomas
[41].

Wu et al. [42] used similar methods to conditionally
delete PTEN and adenomatous polyposis coli (APC)
tumor suppressor gene upon administration of an adeno-
virus carrying Cre. APC has been shown to regulate Wnt/
β-catenin signaling [43]. Wu et al. cross-bred PTENloxP/loxP

with APCloxP/loxP transgenic mice to determine if there was
an interaction between the two pathways. The PTEN-/-

APC-/- animals developed tumors within 6 weeks upon
inactivation, with death occurring at 19 weeks. These
tumors resembled human OEA, with increased signaling
through Akt. Loss of E-cadherin and cytokeratins indi-
cated that these tumors were undergoing epithelial-mes-
enchymal transition (EMT), which is consistent with Wnt/
β-catenin and PI3K/Akt activation [44,45]. Both the stud-
ies by Dinulescu et al. [32] and Wu et al. [42] rely on ade-
novirus administration and are therefore subject to the
same limitations.

Chodanker et al. [46] crossbred mice with follicle stimu-
lating hormone (FSH) receptor promoter fused to Cre
recombinase (FSHR-Cre) to mice carrying Brca1loxP/loxP to
conditionally knockout Brca1 in the granulosa cells. Loss
of Brca1 resulted in multiple cyst formation in 40 of 59
animals (58%) attached to the ovary wall and interior or
exterior surface of the uterine horns, which resembled
human serous cystademonas, the benign form of ovarian
serous carcinomas. One animal formed a solid tumor.
Although the FSHR promoter targeted the granulosa cells,
the cysts resembled an epithelial morphology as they
expressed keratins.

Clark-Knowles et al. [47] used Brca1loxP/loxP mice, which
upon administration of AdCre would remove introns 5
through 13 (Brca1Δ55-13). Conditional deletion of Brca1
resulted in morphological changes, such as surface epithe-
lium hyperplasia and formation of inclusion cysts, which
was not due to increased proliferation. The incidence of
these changes increased over time as observed from 60
days post-infection to 240 days. Interestingly, the genes
involved in cancer initiation and progression p53 [48], E-
cadherin [49], and Collagen IV [50] were altered in
Brca1Δ55-13 ovaries compared to other tumor models. In
Brca1Δ55-13 ovaries, p53 was absent compared to SV40-
induced tumors. E-cadherin was also downregulated, con-
sistent with preneoplastic transformation. Collagen IV
expression was found in the basement membrane, regard-
less of morphological changes of the OSE.

Building on the report by Connolly et al. [24], El-Naggar
et al. [51] used the MISIIR promoter linked to the pituitary
tumor-transforming gene (PTTG) to target expression to
the OSE. This construct was microinjected into the male
pronucleus of CD2F1 embryos to produce transgenic
founders. The founders were crossbred with wildtype ani-
mals to produce the F1 generation. Positive male and
female F1's from the same line were crossbred to produce
the F2 generation. While the transgenic females failed to
generate any visible tumors, there was an increase in the
corpus luteum mass in the transgenic ovaries, which was
accompanied by the increase in serum luteinizing hor-
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mone (LH) and testosterone levels. The transgenic
females also displayed a generalized hypertrophy of the
endometrium. This study showed that by using the MISIIR
promoter, 3 different tissues could be targeted: OSE, gran-
ulosa cells, and pituitary.

More recently, Liang et al. [52] used the MISIIR promoter
to drive expression of murine phosphatidylinositol 3-
kinase catalytic subunit p110-alpha (PIK3CA) in trans-
genic mice. Although over-expression of PIK3CA resulted
in increased phosphorylated Akt as its downstream target
and in OSE hyperplasia, after 18 months post-birth of the
F1 generation, tumorigenesis did not occur. Interestingly,
the authors cultured isolated ovaries from non-transgenic
mice and co-transfected them with both PIK3CA and
mutant K-ras or c-myc to assess OSE transformation in
vitro. Concurrent over-expression of PIK3CA and mutant
K-ras led to increased anchorage-independent growth of
cultured OSE cells. Liang et al. [52] acknowledged that
producing a "bigenic" animal by crossbreeding the trans-
genic PIK3CA mouse with a transgenic mutant K-ras
remains a technical challenge because mutant K-ras ani-
mals develop tumors that inhibit reproduction. However,
they suggested that a Cre-lox system of K-ras expression
may provide an alternative method of generation.

Genetically induced granulosa cell tumor (GCT) models
Granulosa cell tumors (GCT) represent 2-5% of all OCs
[53] arising from the granulosa cells of the ovary, which
are responsible for estradiol production. Therefore, GCT
are also called sex cord-stromal tumors. One of the first
GCT models was produced by Kananen et al. [54], who
fused the inhibin α-subunit promoter to SV40 TAg to gen-
erate transgenic founders. Three lines were established
from these founders with all transgenic offspring develop-
ing GCT in two of the lines: 14/14 animals in one line and
22/22 animals in another. The granulosa cells still main-
tained their receptors, making them responsive to gona-
dotrope stimulation. SV40 TAg mRNA expression was
found in the gonads, adrenal glands, pituitary, and brain
indicating leakiness of the inhibin α-subunit promoter.

Nilson et al. [55] generated a GCT tumor model through
chronic hyperstimulation of LH by fusing the β-subunit of
LH containing a carboxy-terminal peptide of human cho-
rionic gonadotropin β subunit to a bovine inhibin α-sub-
unit promoter (α-LHβCTP) to extend its half-life and
target gonadotrope cells. As a result of the constant LH
stimulation, the ovary became anovulatory from its ina-
bility to respond to the necessary LH surge. While the ani-
mals could be super ovulated, the pregnancy failed at
mid-gestation. Females also displayed a reduction in the
amount of primordial follicles with an increase in large
hemorrhagic follicles. By 5 months of age, the females

developed GCT and pituitary hyperplasia, dying shortly
thereafter due to bladder atony and kidney failure.

Selvakumaran et al. [56] isolated a new promoter to deter-
mine specificity to the ovary by using repetitive retrovirus-
like elements in the rat genome, termed ovarian-specific
transcription units (OSTUs). The U3 region of the OSTUs
was cloned and renamed ovarian-specific promoter-1
(OSP-1). OSP-1 was then used by Garson et al. [43] to
drive expression of SV40 TAg (OSP-TAg). While success-
fully producing both male and female founders, many
females either failed to reproduce or the offspring failed to
develop tumors despite high levels of expression of TAg.
Two of the three female founders developed GCT, but
expression was not restricted to the ovary as osteosarco-
mas formed in the liver and lung. The thymus also
showed enlargement demonstrating that OSP-1 was suffi-
ciently leaky. Male founders also expressed TAg in a vari-
ety of tissues including testes, liver, and lung, but failed to
produce any tumors.

Boerboom et al. [57] showed that constitutive activation
of β-catenin in granulosa cells of transgenic mice (Catnb-
flox(ex3)Amhr2cre/+) produced GCT. Cre knocked into the
anti-Mullerian hormone receptor, type II (AMHR2) gene, des-
ignated AMHR2cre/cre, to localize its expression. Exon 3 of
β-catenin encodes for multiple phosphorylation sites that
are necessary for its degradation, while its removal main-
tains the protein's functionality. However, the excision of
exon 3 of Catnb by Cre was a relatively inefficient process
as few Catnbflox(ex3)Amhr2cre/+ mice displayed abnormal
expression of β-catenin. Histochemical analysis showed
that the ovaries of 3 to 24-week-old transgenic mice devel-
oped abnormal follicle-like structures consisting of pleio-
morphic granulosa cells without the presence of an
oocyte, resulting in sub-fertility due to an impaired follic-
ular response that could be overcome with age at the end
of the third month. GCT were seen at 19 weeks with the
incidence of formation over time to 57% at 7.5 months.

Building upon the previous study, Lague et al. [58] condi-
tionally deleted PTEN in the granulosa cells by cross-
breeding PTENflox/floxwith AMHR2cre/cre mice to create
PTENflox/floxAMHRcre/+. Most PTENflox/floxAMHRcre/+ mice
failed to generate any ovarian abnormalities; while these
animals could establish pregnancies, they failed to carry
the litter to term or had small litters due to fetal death.
However, 5 of 70 (~ 7%) female PTENflox/floxAMHRcre/+

developed ovarian tumors. Four of the 5 were bilateral
tumors developing between 7 weeks and 7 months that
were identified as GCT. PTENflox/floxAMHRcre/+ mice also
developed tumor cell emboli and metastases in the lungs.
PTENflox/floxAMHRcre/+ GCT showed altered PI3K/Akt sign-
aling, with increases in both phosphorylated Akt and
mammalian target of rapamycin (mTOR) levels compared
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to normal granulosa cells. Furthermore, to determine if
the PI3K/Akt pathway could cross-talk with the WNT/
CTNNB1 (encoding β-catenin) pathway, they constitu-
tively activated both pathways using the mouse model
PTENflox/floxCTNNB1flox(ex3)AMHRcre/+. These mice devel-
oped bilaterial ovarian tumors with 100% penetrance at
an early age. Dysplastic cells were seen in the ovaries of
newborn mice and 20.5-day embryos suggesting that this
occurs perinatally. The ovarian tumors visibly distended
the abdomen by 5 weeks of age with death occurring
before 9 weeks, possibly due to severe anemia. Pulmonary
emboli were also seen in PTENflox/

floxCTNNB1flox(ex3)AMHRcre/+ mice.

Conclusion
The syngeneic model has shown that MOSE cells are capa-
ble of spontaneously transforming into a tumorigenic
phenotype with repeated passages, indicating that
repeated repair of the OSE as a result of excessive ovula-
tion could be a cause of tumorigenesis. The manipulation
of MOSE cells and subsequent injection may form a
tumor, but the tumor could form solely from the MOSE
cells and not the host OSE cells as MOSE cells could
undergo mesenchymal-epithelial transition (MET) to
imbed in the host tissue. The limitation of extracting
MOSE cells and culturing them before transplantation
allows for only a limited number of animals to be pro-
duced and does not establish an inheritable line that
would spontaneously form EOC.

A summary of the genetically induced ovarian epithelial
tumor models can be found in Table 1. These models have
provided valuable information regarding gene dysfunc-
tion necessary for tumorigenesis, including p53 and Rb
deletion, as well as over-expression of known oncogenes
c-myc, Kras, and Akt. Models that use transgene expression
during embryonic development do not accurately repre-
sent spontaneous EOC, which tends to occur in post-men-
opausal women, and yet gene deletion by adenoviruses
carrying Cre allows for only transient expression. Some of
these models have been successful in producing ovarian
tumors; however, the aggressiveness of tumor formation
can inhibit reproduction and limit establishment of a

reproductive line. These models are limited by the lack of
a specific promoter for the ovaries, as the MISIIR and ker-
atin 5 promoter are both leaky. Clearly, the need to pro-
duce a model that can recapitulate human EOC is still
necessary to understand the etiology of a very complex
disease to allow for better screening and treatment pur-
poses.

Table 2 summarizes the genetically-induced GCT models.
OSP-1 and inhibin α-subunit promoters are not specific
to the ovaries, although sufficiently strong to drive tumor-
igenesis. While knocking Cre into the AMHR2 locus was a
clever design, the efficiency of the targeted gene deletion
was relatively ineffective, as gene expression was main-
tained, possibly due to Cre acting on only the cis chromo-
some so ovarian abnormalities were not observed.

Many models have used SV40 TAg, a monkey virus
belonging to the polyomavirus family, to initiate tumori-
genesis. In a breast cancer model, SV40 TAg was shown to
inactivate p53 and Rb to initiate tumorigenesis [59].
While SV40 TAg has been reported in several types of
human cancer including breast, brain, osteocarcomas,
lymphomas, hepatocellular carcinomas, papillary thyroid
carcinomas, and pleural mesothelioma [60-66], it has not
been reported in OC. At best, SV40 TAg has been used
widely to immortalize OC cell lines [67-69]. Moreover,
SV40 TAg immortalization of cultured human OSE cells
eliminated the presence of CA-125 [69], one of the current
diagnostic markers for EOC [70].

To understand the complexity of OC, a mouse model rep-
resenting each subtype is needed. From the current trans-
genic models, we have learned that different pathways are
used for tumorigenesis. For EOC, p53 mutations/inactiva-
tion plays a role, as seen in high-grade tumors [26], while
GCT have intact p53 but dysregulated PTEN and Wnt/β-
catenin signaling occurring perinatally [42,57,58].

List of Abbreviations
α-LHβCTP: inhibin α-subunit promoter, LH gene with a
carboxy-terminal peptide of human chorionic gonadotro-
pin β subunit attached; AdCMVCre: adenoviruses contain-

Table 1: Summary of promoters and targeted genes for ovarian epithelial tumorigenesis.

Authors Promoter Targeted gene Tumorigenesis Limitation

Orsulic et al. (2002) keratin-5, RCAS TVA, p53-/-, oncogenes Yes External manipulation
Connolly et al. (2003) MISIIR SV40 TAg Yes Inhibited female reproduction
Flesken-Nikkita et al. (2003) AdCre p53-/- & Rb-/- Yes Transient expression
Dinulescu et al. (2005) AdCre K-ras & PTEN-/- Yes Transient expression
Wu et al. (2007) AdCre PTEN-/- & APC-/- Yes Transient expression
Chondankar et al. (2005) FSHR Cre, BRCA1-/- No
Clark-Knowles et al. (2007) AdCre BRCA1Δ5-13 No Transient expression
El-Naggar et al. (2007) MISIIR PTTG No
Liang et al. (2009) MISIIR PIK3CA No
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ing CMV promoter and Cre gene; AdCMVEGFP:
adenoviruses containing CMV promoter and EGFP gene;
AMHR2: anti-Mullerian hormone receptor, type II; APC: ade-
nomatous polyposis coli; Catnbflox(ex3)Amhr2cre/+: trans-
genic mice that Cre knocked into the AMHR2 gene to
produce constitutive activation of β-catenin; CMV:
cytomegalovirus; Cre: Cre recombinase; DMBA: 7,12-
Dimethylbenz(a)anthracene; EMT: epithelial-mesenchy-
mal transition; EOC: epithelial ovarian cancer; FSHR: fol-
licle stimulating hormone receptor; GCT: Granulosa cell
tumors; LH: luteinizing hormone; LSL-K-rasG12D/+: mice
that have a transcriptionally silent, oncogenic allele of K-
ras; MET: mesenchymal-epithelial transition; MISIIR:
Mullerian Inhibitory Substance Type II Receptor; MOSE:
mouse ovarian surface epithelium; OEA: ovarian endome-
trioid adenocarcinomas; OSE: ovarian surface epithelium;
OSP-1: ovarian-specific promoter-1; OSTUs: ovarian-spe-
cific transcription units; PIK3CA: catalytic subunit p110-
alpha of phosphatidylinositol 3-kinase; PTEN: phosphate
and tensin homologue deleted on chromosome 10; PTTG:
pituitary tumor-transforming gene; RCAS: replication-
competent avian leukosis viral-derived vectors; SV40 TAg:
simian virus 40 T antigen; TVA/p53-/-: transgenic mice
expressing TVA receptor and are null for p53.
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