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Abstract

Background: Current protocols for the treatment of ovarian cancer include combination chemotherapy with a
platinating agent and a taxane. However, many patients experience relapse of their cancer and the development of
drug resistance is not uncommon, making successful second line therapy difficult to achieve. The objective of this
study was to develop and characterize a cell line resistant to both carboplatin and docetaxel (dual drug resistant
ovarian cell line) and to compare this cell line to cells resistant to either carboplatin or docetaxel.

Methods: The A2780 epithelial endometrioid ovarian cancer cell line was used to select for isogenic carboplatin,
docetaxel and dual drug resistant cell lines. A selection method of gradually increasing drug doses was
implemented to avoid clonal selection. Resistance was confirmed using a clonogenic assay. Changes in gene
expression associated with the development of drug resistance were determined by microarray analysis. Changes in
the expression of selected genes were validated by Quantitative Real-Time Polymerase Chain Reaction (QPCR) and
immunoblotting.

Results: Three isogenic cell lines were developed and resistance to each drug or the combination of drugs was
confirmed. Development of resistance was accompanied by a reduced growth rate. The microarray and QPCR
analyses showed that unique changes in gene expression occurred in the dual drug resistant cell line and that
genes known to be involved in resistance could be identified in all cell lines.

Conclusions: Ovarian tumor cells can acquire resistance to both carboplatin and docetaxel when selected in the
presence of both agents. Distinct changes in gene expression occur in the dual resistant cell line indicating that
dual resistance is not a simple combination of the changes observed in cell lines exhibiting single agent resistance.
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Background
Ovarian cancer remains the most lethal gynecological
cancer, with a 5-year mortality rate greater than 50% [1].
The high mortality rate from ovarian cancer is partly
due to lack of effective screening and diagnosis methods
and another significant factor is the development of re-
sistance to chemotherapeutic treatment regimens [2,3].
The advanced stage of most tumours at diagnosis has
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led to cytoreductive surgery with subsequent chemother-
apy as the current standard of treatment for ovarian can-
cer [4,5]. Despite the high rates of initial response, more
than half of all patients will experience recurrent disease
and eventually fail to respond to chemotherapy [6]. Fail-
ure of chemotherapy in recurrent ovarian cancer is usu-
ally due to the development of resistance to the two
main classes of chemotherapy agents used to treat ovar-
ian cancer, platinating agents and taxanes, and combined
resistance to both agents may occur [7-9].
Mechanisms underlying the development of resistance to

platinating agents, especially cisplatin, have been well char-
acterized and include repair of DNA lesions, translesional
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DNA synthesis, altered cellular transport of the drug,
increased antioxidant production, and reduction of apop-
tosis [10-12]. Altered gene expression affecting cellular
transport, DNA repair, apoptosis, and cell-cell adhesion
are mechanisms of platinum resistance that have been
observed in patient samples [13,14]. In the treatment of
ovarian cancer, taxanes were originally introduced as an
alternative to cisplatin and to overcome cisplatin resistance
[15,16]. The development of resistance to taxanes has been
equally well studied and genetically characterized. Typical
mechanisms of paclitaxel resistance involve alterations in
drug transport, e.g. changes in P-glycoprotein expression,
altered expression of or mutations in microtubule protein
genes, expression of taxane metabolizing proteins, and
altered cell signaling resulting in reduced apoptosis [17-20].
Although clinical evidence indicating a role for some of
these factors in patient response to taxane treatment of can-
cer, e.g. altered expression of Class III β-tubulin, reduced
apoptosis conferred by survivin expression and metabolism
of taxanes by cytochrome P450 proteins, clinical evidence
for many mechanisms established in preclinical models is
variable [21-23] [24,25].
The difference in mode of action and mechanisms of

resistance between platinating agents and taxanes is taken
advantage of in dual agent chemotherapy of advanced
ovarian cancer, to achieve significantly increased efficacy
and progression free survival (PFS) of patients. The most
common combination therapy is carboplatin together with
paclitaxel, although the taxane docetaxel has also been
used with similar efficacy [26-28]. Notwithstanding the
success of dual agent therapy, relapse of the cancer and
development of resistance occurs in the majority of cases
[4,26,29,30]. Chemoresistance arising from combined pla-
tinating agent and taxane therapy is more difficult to over-
come than single agent resistance [31-33]. Currently, it is
not known if mechanisms of resistance to dual agent
chemotherapy are a combination of single agent resistance
responses or if novel mechanisms arise as a result of com-
bination therapy. Moreover, it is difficult to overcome dual
drug resistance, even with drugs that have completely
different modes of action and targets [34-36]. This may in-
dicate that novel and different mechanisms of resistance
arise from combined platinating agent/taxane chemother-
apy. In this study, carboplatin was selected as the platinat-
ing agent based on its’ common clinical use [7,37,38].
Docetaxel was chosen as the taxane agent based on the
potentially favorable toxicity profile [27], especially when
combined with pegfilgrastim to prevent neutropenia [39],
and increasing use for cancers like breast cancer. Further-
more, docetaxel has been shown to have activity against
paclitaxel resistance in patients [40].
To investigate if the development of dual agent resist-

ance invokes different mechanisms or is a combination
of the mechanisms of resistance that arise upon exposure
to single agents, we have developed a set of isogenic
ovarian cancer cell lines resistant to either carboplatin,
docetaxel or a combination of carboplatin and docetaxel.
Changes in gene expression associated with the specified
drug resistance in each cell line were analyzed using
microarray analysis. Comparison between the three resist-
ant cell lines permitted identification of shared and differ-
ent changes in gene expression among the cell lines. This
analysis showed that the establishment of carboplatin and
docetaxel resistance does not share many changes in gene
expression and that dual agent resistance appears to de-
velop from mostly unique changes in gene expression, dif-
ferent from both carboplatin and docetaxel resistance in
the set of isogenic cell lines studied.

Methods
Cell lines and culture
The human ovarian carcinoma cell line A2780 was pur-
chased from the European Collection of Cell Cultures
(ECACC, Salisbury, UK) and maintained in RPMI-1640
medium with 2mM Glutamine, which contained 10% fetal
bovine serum (FBS), and 1% Penicillin (10,000 U/ml)/
Streptomycin(10,000 μg/ml) solution (HyClone, South
Logan, Utah, US). The A2780 ovarian cancer line is likely
of the endometrioid subtype (Dr. Michael Anglesio, data
pending publication). The drug resistance of the carbopla-
tin resistant cell line A2780CBN was maintained by
adding 2.22 × 10-5 M carboplatin in complete medium
(RPMI-1640 with 10% FBS and 1% Penicillin 10,000 U/
ml/Streptomycin 10,000 μg/ml) once every week, the doc-
etaxel resistant cell line A2780DXL was maintained by
adding 4.05 × 10-7 M docetaxel in complete medium
bi-weekly and resistance of the carboplatin/docetaxel dual
resistant cell line A2780CBNDXL was maintained by treat-
ing with 6.07 × 10-6 M carboplatin and 6.07 × 10-9 M doce-
taxel in complete medium bi-weekly.

Cell viability assay
Clonogenic assay for drug sensitivity
Cells were assayed for sensitivity to carboplatin, doce-
taxel, and combined carboplatin/docetaxel using a clo-
nogenic assay that quantifies the number of colonies
generated from viable cells [41].

Determination of IC50
The number of colonies growing was recorded by taking
photomicrographs of five random fields (100X magnifi-
cation) per drug concentration and counting the colonies
in each field. The average for each drug concentration was
normalized to the average of the drug free control to gen-
erate a survival fraction. The software program Graph Pad
Prism (Graph Pad Software Inc, La Jolla, CA) was used to
plot a survival curve using the function “log [inhibitor] vs.
normalized response with variable slope” to calculate the
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IC50. Statistical analysis to determine if the IC50 of each
resistant line was significantly different from the co-
cultured parental control was calculated using Student’s
t-test with two-tailed distribution and unequal variance. A
p-value ≤0.05 indicated that a significant difference existed
between the two sets of data (n = 3).

Cell line selection
Cell line selection was performed as described in a pre-
vious study by Guo et al. [42]. Briefly, selection began in
a dose 1000-fold below the IC50 of the parent line and
doses were increased 3.00-fold, 1.50-fold or 1.25-fold,
depending on the ability of the cells to continue prolifer-
ating. For the A2780CBNDXL cell line, the concentrations
of carboplatin and docetaxel were raised together by the
same factor each time. A co-cultured control was devel-
oped for each resistant line, as described, to control for
changes in gene expression due to continuous culture.

Cell line growth rate analysis
Cells were plated at a density of 2.0 × 105 cells per
9.60 cm2 in six well plates. Three wells were counted for
each day of a four day growth curve analysis using a
Vi-cell XR cell viability analyzer (Beckman Coulter, Inc.,
Mississauga, ON). Three biological replicates of the
growth curve experiment were performed. Averages of
viable cell numbers were plotted for each day and stu-
dent’s t-test (unpaired, two tail, variable variance) was
applied to determine if the average cell number per day
was significantly different or not from the parental line.
Population doubling time was calculated using the for-
mula G = t * log(2)/(log(Nt) − log(N0)), where G = gener-
ation or doubling time, t = time period (hr.), Nt =
number of cells at time t, N0 = initial number of cells.

RNA isolation and quality analysis
Total RNA from each cell line was prepared using RNeasy
Mini Kit (50) # 74104 from Qiagen Inc. (Toronto, ON)
according to the manufacturer’s instructions. RNAase
OUT (cat. 10777019,Invitrogen/Life Technologies ) was
added to prevent RNA degradation. Integrity of total RNA
samples was assessed using capillary electrophoresis on an
Agilent 2100 Bioanalyzer. RNA samples with RIN values
of 8.0 or higher were considered intact and appropriate to
use for microarray analysis.

Microarray analysis
Changes in gene expression between A2780 parental
cells and the derived drug resistant cell lines were observed
using Agilent 4 × 44 whole human genome arrays (Product
#G4112F; Agilent Technologies, Mississauga, ON). A 500
ng aliquot of total RNA, isolated with a Qiagen RNeasy
mini kit (product # 74104, Qiagen Inc.) was used for each
sample. The RNA was labeled with Cy3 or Cy5 using and
Agilent Quick Amp Labeling kit (Product # 5190–0444).
Hybridization was performed as per the manufacturer’s
protocol. Experiments were repeated using multiple batches
of labeled RNA, with both forward and reverse-labeling to
account for dye bias, for a total of 4 (A2780CBN and
A2780CBNDXL) or 8 (A2780DXL) two-color arrays. The
microarrays were scanned, and feature extraction and back-
ground intensity corrections were performed with Agilent
software (v.10.7.3.1). Using a 3-way ANOVA, Partek Gen-
omics suite (St. Louis, MO) was used to generate a list of
genes significantly over- or under-expressed with false
discovery rates of 0.01 and 0.05, with a cut-off value of
± 2-fold change in gene expression. The microarray data
was deposited in the NCBI Gene Expression Omnibus
(GEO) database in accordance with MIAME standards
(GSE39337). This list was further refined in our analysis
by only including genes which had p≥0.05 for the com-
parisons between replicate arrays and reverse labeled
samples. The refined gene lists were imported into Micro-
soft Office Excel 2003 to perform a three-way column
comparison to identify genes that were unique to each cell
line, shared between two lines or shared between all three
of the resistant lines. Partek Genomics Suite was also used
to perform principal component analysis (PCA) and hier-
archical clustering analysis of the data.

Quantitative real time PCR (QPCR)
Three independent RNA isolations were prepared from
each cell line using Qiagen RNeasy isolation kits. Re-
verse transcription of cDNA was performed using the
Superscript First-Strand synthesis system for QPCR from
Invitrogen Canada Inc. (Burlington, ON). Sybrgreen and
Taq polymerase reagents for the QPCR reactions were
purchased as a GoTaq QPCR Master Mix from Promega
Corporation (Madison, WI). QPCR reactions were car-
ried out on a BioRad Dyad Disciple Peltier Thermal
Cycler using a Chromo4 Real-time PCR Detector. QPCR
primers were designed to specifically amplify coding
transcripts (Additional file 1: Table S1). The S28 riboso-
mal RNA gene was chosen as a housekeeping gene as
transcript levels did not vary between the resistant and
parent A2780 lines.

Immunoblotting
Total protein lysates were resolved by SDS-PAGE and
transferred to nitrocellulose membranes. Antibodies for
ABCB1 (cat. sc-73354), GCLC (cat. sc-100747), FLRT3
(cat. sc-82156), CDH11 (cat. sc-52352), CYP1B1 (cat. sc-
32882), ANXA1 (cat. sc-12740), GAPDH (cat.sc-47724)
and GSTO1 (cat. sc-130318) were purchased from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA). The anti-
body for MT2A (cat. H00004502-M01) was purchased
from Abnova Corporation (Cedarlane Laboratories Ltd.,
Burlington, ON). Antibodies against AKR1C3 (Clone
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NP6.G6.A6) and γ-tubulin (cat. T5192) were acquired
from Sigma-Aldrich Canada, Ltd. (Oakville, ON). Bind-
ing of antibodies was detected using Luminol enhanced
chemoluminescence (ECL) reagents from Santa Cruz
Biotechnology, Inc. and images were recorded and ana-
lyzed using an Alpha-Innotech gel documentation sys-
tem with Alpha-Ease software system (Cell BioSciences,
Inc., Toronto, ON) or by exposing film.

Statistical analysis of changes in gene expression
For the microarray data, significant differences in fold
change expression between co-cultured controls and resist-
ant lines was determined using the Partek Genomics Suite
program (Partek Inc.,St. Louis, MO). Significant differences
between log Ct values for the parent and resistant lines,
normalized to log Ct values for the S28 transcript, were
determined using Student’s t-test. To determine fold change
for the qPCR data, the average relative quantity of gene
expression for each gene was determined using MJ Opticon
Monitor Analysis Software v. 3.1 (BioRad Laboratories,
Inc., Mississauga, ON)). Following normalization to the
S28 housekeeping gene, the fold changes were determined
from the ratio between parental and resistant lines.
ANOVA followed by Tukey’s post hoc test was calculated
for qPCR and immunoblot log fold change data in the
Graphpad Prism v. 5.02 (GraphPad Software, Inc., San
Diego, CA).

Results
Generation of carboplatin, docetaxel, and carboplatin/
docetaxel resistant cell lines
The original A2780 parent line had an IC50 for carbopla-
tin of 2.12 × 10-6 M. Therefore, selection for the carbo-
platin resistant line began at 1.00 × 10-9 M carboplatin,
a dose in the 1000 fold range below the IC50 of the par-
ent line, and continued until a maximally tolerated dose
(MTD) of 2.22 × 10-5 M was reached. A maximally tol-
erated dose was considered to be achieved when cell via-
bility dropped below 30% at the next higher dose.
Clonogenic assays performed on the A2780CBN cell line
at this point revealed an IC50 of 7.77 x 10-5 M to carbo-
platin, while the A2780 co-cultured parental control
(A2780CC) had an IC50 of 5.73 × 10-6 M carboplatin.
The IC50 values for the A2780CBN and A2780CC were
statistically different by Student’s t-test (n=3, p=0.004).
The ratio between the resistant and co-cultured control
IC50 values demonstrated about a 13-fold increase in the
IC50 of the resistant A2780CBN line (Table 1). The doc-
etaxel selection was performed in a similar fashion, be-
ginning with determination of IC50 of the original parent
line as 8.82 × 10-10 M DXL. Selection in docetaxel started
in 1 × 10-13 M, and ended with a MTD of 4.05 × 10-7 M.
The IC50 and fold-resistance of the A2780DXL line and
corresponding A2780CC are shown in Table 1.
Selection of the A2780CBNDXL dual resistant cell line
Based on the drug concentrations used to begin selec-
tion for the A2780CBN and A2780DXL lines, a combin-
ation of 1 × 10-9 M carboplatin and 1 × 10-13 M docetaxel
was used to begin selection for the dual resistant line.
When exposed to combined carboplatin and docetaxel,
the IC50 values of the A2780 parent line were 2.43 × 10-7

M for carboplatin, and 2.43 × 10-10 M for docetaxel
(Figure 1A). This was lower than the IC50 of the parent
cells to carboplatin alone by a factor of 8 fold and lower
than the IC50 of the parent cells to docetaxel alone by a
factor of 4 fold, a result that demonstrates the increased
efficacy of combining the two drugs.
Selection was carried out until a maximally tolerated dose

of 6.07 × 10-6 M carboplatin and 6.07 × 10-9 M docetaxel
was achieved. However, the IC50 of the A2780CBNDXL
cells was 8.02 x 10-6 M carboplatin, and 8.02 × 10-9 M doc-
etaxel, almost 13 fold higher than the IC50 for the
A2780CC cells at a similar passage number (Figure 1B and
Table 1), and 33 fold higher than the IC50 of the original
A2780 parent cells (Figure 1A).
Proof of dual resistance in the A2780CBNDXL cell line
To establish that the A2780CBNDXL line was genuinely
resistant to both carboplatin and to docetaxel, the cell
line was exposed to each drug separately in two clono-
genic assays. The results, shown in Figure 2 and Table 1,
demonstrate that the A2780CBNDXL line is resistant to
both carboplatin and docetaxel and is, therefore, a dual
drug resistant cell line.
Lack of cross resistance in the A2780CBN and A2780DXL
lines
The A2780CBN cell line was exposed to varying concen-
trations of docetaxel along with the co-cultured parental
control and plated in a clonogenic assay. The A2780CBN
line had an IC50 of 3.62 × 10-10 M in docetaxel while the
A2780CC displayed an IC50 of 5.76 × 10-10 M (Figure 3A
and Table 1). The responses of the two cell lines to doce-
taxel were compared for statistical significance using Stu-
dent’s t-test and were not significantly different (p=0.39,
n=3), indicating that the A2780CBN cell line was not
cross resistant to docetaxel.
A clonogenic assay was also carried on the A2780DXL

cell line to test for cross resistance to carboplatin. Plot-
ting of the data generated an IC50 value of 2.20 × 10-6 M
carboplatin for the A2780DXL cell line and 6.75 × 10-6

M for the A2780CC (Figure 3B and Table 1). There was
no significant difference between the IC50 values (p=0.59,
n=3) for the A2780DXL and A2780CC cell lines, estab-
lishing a lack of cross resistance to carboplatin in the
A2780DXL line.



Table 1 Resistance values determined by clonogenic assay expressed as IC50 for each cell line and drug(s)

Resistant line IC50 of resistant line to either
CBN and/or DXL

IC50 of co-cultured control to
either CBN and/or DXL

Fold resistance. Ratio of IC50 of
resistant line/ co-cultured control

A2780CBN 7.77 x 10-5 M CBN 5.73 x 10-6 M CBN 13.56

3.62 x 10-10 M DXL 5.76 x 10-10 M DXL 0.63

A2780DXL 3.61 x 10-7 M DXL 8.91 x 10-11 M DXL 4051.63

2.20 x 10-6 M CBN 6.75 x 10-6 M CBN 0.33

A2780CBNDXL 8.02 x 10-6 M CBN 6.37 x 10-7 M CBN 12.59

8.02 x 10-9 M DXL 6.37 x 10-10 M DXL

A2780CBNDXL 2.52 x 10-5 M CBN 2.50 x 10-6 M CBN 10.08

A2780CBNDXL 1.47 x 10-8 M DXL 1.84 x 10-9 M DXL 7.99

Figure 1 Response of A2780, A2780CBNDXL and A2780CC to combined carboplatin and docetaxel. Dose–response curves showing the
survival fraction (%) of (A) A2780 parent or (B) A2780CBNDXL and A2780CC cell colonies exposed to increasing concentrations of the two drugs
expressed as the log of carboplatin and docetaxel concentration in molarity (M).
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Figure 2 Resistance of the A2780CBNDXL cell line to each drug alone. Dose–response curves showing the survival fraction (%) of
A2780CBNDXL and A2780CC colonies exposed to increasing concentrations of (A) carboplatin or (B) docetaxel, expressed as the log of
concentration in molarity (M).
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Proliferation of the resistant and parental cell lines
Terminal dose cultures of the A2780CBN, A2780 DXL
and A2780CBNDXL cell lines and the parental A2780
line, were plated without drug to determine the effect of
selection on cell doubling time (growth rate). Fresh
medium was provided to the day 3 and4 cultures on day
2. Curves representing the average proliferation of each
cell line across three replicate experiments show that all
resistant lines proliferate more slowly than the parental
A2780 cell line (Figure 4). Calculation of doubling times
for each cell line generated a time of 19.8 hours for the
A2780 parental line, 24.02 hours for the A2780CBNDXL
line, 25.28 hours for the A2780 DXL line and 39.50
hours for the A2780CBN line, consistent with a reduc-
tion in cell doubling time upon selection for resistance
to either agent (alone) or the agents in combination.
Changes in gene expression associated with resistance by
microarray analysis
Lists of genes with significant changes in expression
(p ≤ 0.05) in each cell line compared to the matching
co-cultured control were derived from the Partek Gen-
omics Suite as described. The Partek Genomics list
showed 3000 genes were significantly different in the
A2780CBN line, 4621 genes were significant in the
A2780DXL line and 4070 genes were significantly differ-
ent in the A2780CBNDXL line. If a gene exhibited an op-
posite direction in fold change (upregulated in one line
but down regulated in another) it was counted as unique
in each line and shared between lines if they went in the
same direction. Following the refinement of the lists as
described, a total of 1096 unique changes in gene expres-
sion were observed for the A2780CBN cell line compared



Figure 3 Lack of cross-resistance in the A2780CBN and A2780DXL cell lines. A. Dose response curve showing the survival fraction (%) of
A2780CBN and A2780CC colonies exposed to increasing doses of docetaxel. B. Dose response curve showing the survival fraction (%) of
A2780DXL and A2780CC colonies exposed to increasing doses of carboplatin.
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to the co-cultured parental control, 1273 unique changes
were observed in the A2780DXL cell line and 1154 changes
were specific to the dual resistant cell line (Figure 5).
Roughly the same total number of genes were identified as
changed as a consequence of selection for drug resistance
(irrespective of drug used), but the majority (>70%) of
changes in gene expression are unique in each cell line.
The number of changes shared between the lines com-
prised about 15% or less of the total number of changes in
each line and the changes shared among all three lines was
less than 5%.
Principal Component Analysis of all the genes included

in the microarrays was able to separate the gene expression
profiles of the samples by drug resistance, indicating that
all three of the resistant cell lines were distinct from each
other (Figure 6). The first three principal components of
the analysis were able to account for about 87% of the total
variance in the data, with 62% of the variance accounted
for by the first principal component, 20% by the second
component and 5% by the third component. The plot in
Figure 6 shows that the A2780DXL line is most distinct in
terms of gene expression, although the A2780CBN and
A2780CBNDXL lines are also clearly separate. Hierarchical
clustering of all the genes with significantly altered expres-
sion in at least one of the three resistant cell lines showed
a difference in the gene expression patterns of each of the



Figure 4 Proliferation of resistant and parental cell lines. Average cell counts of three wells, for three replicate experiments, are plotted
against time in days. Cell lines were plated at the same density on day 0 and a set of wells was counted on each day of the proliferation assay.

Figure 5 Unique and shared gene sets among the A2780
resistant cell lines. The total number of gene expression changes
for each line appears in brackets beside the cell line label. The
number of changes in gene expression that were unique to each
cell line or shared between lines are indicated in appropriate
sections.
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three resistant lines, demonstrating again that the dual re-
sistant line is distinct from the single agent resistant lines
(Figure 7). Furthermore, the clustering analysis confirmed
the greater separation of the docetaxel resistant line.

Selection of validation gene sets
Unique gene signals based on the microarray results
were selected from each of the three resistant cell lines
for validation by QPCR and immunoblotting. Genes
known to be associated with resistance to either plat-
inum or taxane agents, with a fold change greater than
or equal to two, and with average fluorescence signals
of 100 units or more were selected. In some cases a
gene signal was shared between cell lines; for example
the AKR1C3 signal is significantly different in both the
A2780CBN and the A2780CBNDXL line. Since the
AKR1C3 aldoketoreductase has been shown to play a
role in drug resistance [43-45] and the values in the
A2780CBNDXL line were within the limits set for the
validation gene set, AKR1C3 was included in the gene
set despite low values in the A2780CBN line. A similar
selection was made for the CDH7 cadherin gene. In the
A2780CBNDXL cell line, the CDH7 gene transcript dis-
played one of the highest fold changes and fluorescence
values, while the A2780CBN line displayed a much weaker
upregulation. The final validation set selected included a
total of 16 genes (Tables 2 and 3), composed of 4–5 genes
per line with two genes chosen because the change in ex-
pression was shared among all three lines (LAYN and
PRSS7) (Table 3).

Significant differences confirmed between parent and
resistant cell lines
Significant differences in transcript levels from the micro-
array data were confirmed by QPCR for all transcripts in
at least one cell line except the GSTO1 transcript, which
was not found to be significantly different from the parent
in any of the cell lines, despite the microarray results
(Additional file 2: Table S2). A comparison of fold changes
calculated from the microarray and QPCR data is shown
in Table 4. There was perfect concordance between the
microarray and QPCR results for significant changes in
expression of the ABCB1, ABCB4, AKR1C3, GCLC,
LAYN and PRSS7 genes. In general, the QPCR experi-
ments confirmed the microarray results with regard to
direction of change, but fold change often differed. Fur-
thermore, expression of transcripts was often detected by
QPCR in several of the lines, although our filtered micro-
array data had indicated that the changes selected for val-
idation were unique to a cell line. Additional significant
changes were found in one or more of the resistant lines



Figure 6 Principal component analysis of the three resistant A2780 cell lines. Principal component analysis was performed on the entire set
of genes included in the Agilent 4 × 44K whole Human Genome microarray for all the microarray experiments run on the three resistant A2780
cell lines. The analysis was done using the Partek Genomics Suite software.
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for the ANXA1, CDH11, CYP1B1, FLRT3, GSTO2, LGI1,
MT2A, and PARP9 transcripts. Besides providing con-
firmation of the microarray results, the QPCR data dem-
onstrate greater sensitivity in detecting gene expression
compared to microarray hybridization.

The dual resistant line contains specific differences in
gene expression
To examine if the expression level of the selected genes
was significantly different between the resistant cell
lines, one-way ANOVA was performed on the log of the
fold change as determined by QPCR. When the ANOVA
showed a significant difference (p ≤ 0.05), Tukey’s test
was applied as the post hoc test to identify the cell line
(s) that contained most of the difference. Significant dif-
ferences among the resistant cell lines were not found
for five genes (FLRT3, GSTO1, LAYN, MT2A, PRSS7)
while two genes (ABCB1 and ANXA1) were significantly
different among all three cell lines (Table 5). Of the
remaining nine genes in the validation set, four were
found to be significantly different in the dual resistant line
(AKR1C3, CDH7, CDH11, PARP9) while the A2780CBN
and A2780DXL lines each contained only two of the sig-
nificantly different genes. Differences in expression of the
ABCB4 gene could not be assessed among the three
resistant cell lines because there was no detectable
expression at all in the A2780CBN line. Table 5 lists the
pair wise comparison results from the Tukey’s post hoc
test and indicates whether a significant difference (p <
0.05, n=3) exists for each comparison. Plots of the log
fold changes for the validation gene set showing the
results of the ANOVA followed by Tukey’s test are
shown in Additional file 3: Figure S1. The results dem-
onstrate that the A2780CBNDXL cell line contains spe-
cific changes associated with development of dual drug
resistance which are significantly different from the
single agent resistant cell lines.

Changes in protein expression determined by
immunoblotting
Further confirmation of the changes in gene expression, at
the protein level, was attempted by immunoblotting. Of the
11 antibodies acquired for the immunoblotting (see Materi-
als and Methods) experiments, only the AKR1C3, ANXA1,
CYP1B1, GCLC, GAPDH, MT2A and γ-tubulin antibodies
produced measurable immunoblot signals (Figure 8). Fol-
lowing blotting, detection of the primary antibody signal,
and stripping of the membrane, a loading control blotting
was performed with either the γ-tubulin or GAPDH anti-
body. After normalization to the loading control band
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Figure 7 Hierarchical cluster analysis of gene expression in each resistant cell line. Heat map showing the result of hierarchical clustering
analysis performed in the Partek Genomics Suite software, of all genes from each resistant cell line with significantly different expression
compared to the co-cultured control.
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densities, average band density ratios were calculated be-
tween the resistant lines and the A2780 parent line
(Figure 9). A one way ANOVA followed by Tukey’s post
hoc test was calculated for the density ratios and the result-
ing p values are shown in Figure 9. Of the five successful
experiments, only the GCLC results (Figure 9D) indicated
that there was a significant difference among the resist-
ant cell lines with most of the difference occurring in
the A2780CBN cell line, although a trend towards
significantly different expression of AKR1C3 in the dual
resistant line is observable.

Discussion
Selection of resistant cell lines
In this study, a set of three isogenic drug-resistant ovarian
cancer cell lines has been generated from the A2780 ovar-
ian cancer cell line. The A2780 cell line has the advantage
of being derived from a chemo-naïve patient, and is



Table 2 Validation gene set, genes with significant changes in one or more of the resistant cell lines according to
microarray analysis

Cell line Gene
designation

Protein name General function Fold
change

P value
for fold
change

Fluorescence
value
resistant line

Fluorescence
value parent
line

A2780CBN AKR1C3 Aldo-keto reductase
family 1 member C3

Catalyzes the conversion
of aldehydes and ketones
to alcohols

−3.07 4.94 x 10-3 18.75 56.25

ANXA1 Annexin A1 Calcium dependent
phospholipid binding
protein

−104.15 1.38 x 10-4 96.50 9992.50

CDH7 Cadherin 7 Cell to cell adhesion
glycoprotein

2.08 1.29 x 10-4 67.25 32.75

GCLC Glutamate-cysteine ligase
catalytic subunit

Rate limiting enzyme of
glutathione synthesis

8.50 5.85 x 10-5 6907.25 815.00

GSTO1 Glutathione S-transferase
omega 1

Stress response protein,
catalyzes addition of
glutathione to toxic
substrates

2.38 1.07 x 10-3 23166.50 9726.50

MT2A Metallothionein 2A Heavy metal binding
protein

3.69 4.15 x 10-6 4899.50 1266.00

PARP9 Poly(ADP)-ribose
polymerase family,
member 9

Catalyzes addition of
ADP-ribose moieties to
substrate proteins

9.40 1.95 x 10-3 2523.25 275.25

A2780DXL CYP1B1 Cytochrome P450 family
1, subfamily B,
polypeptide 1

Phase 1 enzyme in drug
metabolism

−37.77 2.00 x 10-8 491.50 14858.38

LGI1 Leucine-rich glioma
inactivated 1

Metastasis regulator 175.85 1.03 x 10-9 5449.25 30.00

ABCB1 ATP-binding cassette
transport subfamily B,
member 1

Multidrug transporter
(MDR/TAP family)

33.62 8.22 x 10-11 21065.40 649.60

ABCB4 ATP-binding cassette
transport subfamily B,
member 4

Multidrug transporter
(MDR/TAP family)

141.27 5.88 x 10-10 11876.75 84.63

A2780CBNDXL ABCB1 ATP-binding cassette
transport subfamily B,
member 1

Multidrug transporter
(MDR/TAP family)

35.28 2.43E-03 474.25 13.00

ABCB4 ATP-binding cassette
transport subfamily B,
member 4

Multidrug transporter
(MDR/TAP family)

22.70 1.89x10-03 108.75 5.00

AKR1C3 Aldo-keto reductase
family 1 member C3

Catalyzes the conversion
of aldehydes and ketones
to alcohols

7.30 2.62 x 10-3 400.75 55.75

FLRT3 Fibronectin Leucine-rich
Repeat Transmembrane
protein 3

Helps regulate cadherin
mediated cell adhesion
and cell morphogenesis

−115.40 1.79 x 10-3 39.50 4423.25

GSTO2 Glutathione S-transferase
2

Stress response protein,
catalyzes addition of
glutathione to toxic
substrates

5.34 2.68 x 10-4 2133.25 400.00

CDH7 Cadherin 7 Cell to cell adhesion
glycoprotein

68.82 9.24 x 10-4 5223.75 75.70

CDH11 Cadherin 11 Cell to cell adhesion
glycoprotein

1022.24 1.57 x 10-4 10708.75 10.50
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Table 3 Validation gene set, genes present in all three cell lines according to microarray analysis

Gene
designation

Protein name General function Cell line Fold
change

P value for
fold change

Fluorescence value
resistant line

Fluorescence value
parent line

LAYN Layilin Binds hyaluronan, may
play a role in cell adhesion
and motility

A2780CBN −154.83 5.63 x 10-4 88.25 13106.25

A2780DXL −12.95 4.64 x 10-10 75.00 948.50

A2780CBNDXL −145.93 8.16 x 10-4 151.75 14364.25

PRSS7 TMPRSS15, Transmembrane
protease, serine 15/
enterokinase

Membrane bound
enterokinase

A2780CBN 164.34 9.35 x 10-3 1927.75 15.50

A2780DXL 84.44 2.24 x 10-8 3028.75 37.63

A2780CBNDXL 123.06 1.79 x 10-3 6559.00 60.00
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therefore sensitive to many chemotherapeutics [46-50] but
has been demonstrated to be capable of developing resist-
ance in vitro [51-55]. In addition, the strategy of deriving
isogenic drug resistant cell lines from one cell line elimi-
nates variability due to intrinsic genetic differences between
cell lines. Although numerous studies have investigated
mechanisms of drug resistance to single agents, the stand-
ard of care for chemotherapy in ovarian cancer is a com-
bined treatment with a platinating agent and a taxane.
Therefore, in this study, we report the generation of dual
drug resistance in vitro and characterization of cells
selected for resistance to both classes of agents.

Characterization of levels of resistance
During the selection for single or dual drug resistance in
our study, the gradual increase in drug concentration,
Table 4 Comparison of gene expression fold changes by micr

Gene A2780CBN A2780D

Microarray Q-PCR Microarr

ABCB1 NS NS 33.62

ABCB4 NS NS 141.27

AKR1C3 −3.07 −6.30 NS

ANXA1 −104.15 −154.12 NS

CDH7 5.21 NS NS

CDH11 NS NS NS

CYP1B1 NS NS −37.77

FLRT3 NS −342.64 NS

GCLC 11.45 9.98 NS

GSTO1 2.38 NS NS

GSTO2 NS NS NS

LAYN −154.83 −7275.97 −12.95

LGI1 NS −0.64 175.85

MT2A 3.87 NS NS

PARP9 9.40 2.10 NS

PRSS7 164.34 160.48 84.44

NS = not significantly different between parent and resistant line.
beginning with a dose 1000-fold below the IC50 of the
parental A2780 cell line, generated populations of resist-
ant cells and avoided selection of a few drug resistant
clones. This selection strategy may not seem to reflect
the typical clinical approach of treating patients with
high doses delivered in several cycles, but the dose admi-
nistered to a patient is not likely reflective of the amount
of drug that actually reaches a tumor. Studies of intratu-
moral drug distribution have shown that drug concen-
trations vary within a tumor, that not all tumor cells
may experience a lethal dose, and that other factors such
as intratumoral cell heterogeneity and tumor micro-
environment interactions can interfere with consistent,
high dose delivery of a drug in a tumor [56-58]. Al-
though this situation is very difficult to imitate under
in vitro conditions, we believe our approach beginning
oarray and Q-PCR

XL A2780CBNDXL

ay Q-PCR Microarray Q-PCR

73753.41 35.28 2198.19

3617.62 22.70 224.52

NS 7.30 16.37

8.53 NS −6.44

NS 68.82 329.30

12.10 1022.24 761.14

−517.88 NS 3.57

−933.12 −115.40 −101.97

NS NS NS

NS NS NS

9.13 5.34 10.06

−12945.21 −11.03 −1214.05

143.67 NS NS

2.86 NS NS

2.95 NS 18.46

487.41 123.06 802.50



Table 5 Tukey’s post hoc test for significant difference among the resistant cell lines

Gene designation F-test (p Value) A2780CBN vs A2780DXL A2780CBN vs A2780CBNDXL A2780DXL vs A2780CBNDXL

p < 0.05 P < 0.05 P < 0.05

ABCB1 2.23E-05 Yes Yes Yes

ANXA1 1.19E-04 Yes Yes Yes

FLRT3 7.57E-02 No No No

GSTO1 3.44E-01 No No No

LAYN 4.76E-02 No No No

MT2A 2.78E-01 No No No

PRSS7 2.00E-01 No No No

AKR1C3 3.70E-03 No Yes Yes

CDH7 1.88E-02 No Yes Yes

CDH11 3.47E-04 No Yes Yes

PARP9 9.73E-03 No Yes Yes

GCLC 7.27E-05 Yes Yes No

GSTO2 2.18E-03 Yes Yes No

CYP1B1 3.82E-05 Yes No Yes

LGI1 9.61E-06 Yes No Yes

ABCB4 *1.92E-02 N.A. N.A. *N.A.

*t-test p=0.019.
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with a low concentration and gradually increasing the
dose is more likely to mimic the variable and gradually
increasing drug environment in a tumor and to select
for a population of drug resistant cells representative of
the cell heterogeneity present in tumors. Using this se-
lection method, the A2780CBN cell line was acquired
with an IC50 of 7.77 × 10-5 M carboplatin (Table 1), a
concentration similar to the maximally tolerated plasma
concentration of carboplatin (3.8 × 10-5 M) [59], indicat-
ing the A2780CBN cell line tolerates clinically detectable
concentrations of carboplatin. The level of resistance in
the A2780CBN line (13.56 fold) is comparable to resist-
ance levels reported for cisplatin in vitro in ovarian
tumor cells [10,52].
The A2780DXL cell line had an IC50 of 3.61 × 10-7 M

docetaxel, which was 4000 fold more resistant than the
A2780CC. Although initially very toxic, once resistance
had begun to develop, it was possible to increase the dose
until this very high level of resistance occurred. Intraperi-
toneal delivery of docetaxel to patients was reported by
Morgan et al. to result in mean peak plasma concentra-
tions of 4.6-6.6 × 10-7 M docetaxel and 5.9-8.1 × 10-5 M
mean peak intraperitoneal concentrations of doce-
taxel [60]. Although the range between the plasma
and intraperitoneal concentrations reported by Mor-
gan et al. is more than 100-fold, depending on the
compartment measured, the IC50 of our A2780DXL
line falls just under the lower end of the range, indi-
cating that the A2780DXL cell line tolerance also
falls in a clinically relevant range. In vitro resistance
to paclitaxel in ovarian cell lines has been reported
in this range, as well [61,62].
The selection of the dual resistant A2780CBNDXL cell

line resulted in combined resistance, with an IC50 of
8.02 × 10-6 M for carboplatin and 8.02 × 10-9 M doce-
taxel (Figure 1). Compared to the A2780CC cell line, the
fold change in resistance is about 13 for both drugs since
the method we used increased the carboplatin and doce-
taxel doses at the same time and to the same extent. It
is interesting that the increase in resistance is about
13-fold which is similar to the A2780CBN line. This
may indicate that the carboplatin concentration was the
limiting factor in this type of selection scheme. A role
for carboplatin in determining the degree of resistance
achieved in the A2780CBNDXL lines may be reflected
by the principal component and hierarchical clustering
analyses which both showed that the A2780CBN and
A2780CBNDXL cell lines were more similar to each
other than either was to the docetaxel resistant line. If
we compare the IC50 values for the single agent resistant
lines to the dual line (Table 1), there is about a 10-fold
decrease in the amount of carboplatin tolerated by the
dual line compared to the A2780CBN line and about a
45-fold decrease in the amount of docetaxel tolerated by
the dual resistant line, indicating that dual drug treat-
ment is effective at lower doses.
To ensure that the A2780CBNDXL cell line truly was

resistant to both carboplatin and docetaxel, we exposed
the dual line to each drug alone. Figure 2 shows that the
A2780CBNDXL line is resistant to carboplatin (Figure 2A)
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Figure 8 Immunoblots demonstrating protein expression in the A2780 and resistant cell lines. Representative immunoblots of protein
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and to docetaxel (Figure 2B), demonstrating that the
A2780CBNDXL line is a dual drug resistant cell line.
Compared to the A2780CC, the dual line is 10 fold more
resistant to carboplatin and 8 fold more resistant to doce-
taxel. The degree of resistance to each drug appears to
be less than when the dual line is exposed to both drugs
simultaneously (13 fold), but this is likely due to the
A2780CC line tolerating a higher concentration of drug
when it is exposed to each drug alone compared to both
drugs simultaneously.
Cross resistance to completely different drugs or com-

pounds in cell lines selected for resistance to a specific
drug is a recognized phenomenon [53,63,64]. In con-
trast, cross resistance between platinating agents and
taxanes is not very common [65]. In a review of more
than 100 models of acquired drug resistance, approxi-
mately 70% of cisplatin resistant and paclitaxel resistant
cells remained sensitive to paclitaxel and cisplatin, re-
spectively [8]. Since cross resistance could conceivably
contribute to a phenotype of dual drug resistance, the
sensitivity of the single drug resistant cell lines to the
opposite drug was tested. In this study, both the
A2780CBN and A2780DXL lines were shown to lack
cross resistance to docetaxel and carboplatin, respect-
ively (Figure 3). Interestingly, the A2780DXL cell line
showed a trend towards hypersensitivity towards carbo-
platin, although this was not statistically significant
(Figure 3B). Hypersensitivity occurs when a resistant cell
line is more sensitive to a drug than the parental cell line
it was derived from [8,44], and was observed in almost
30% of the models of acquired drug resistance surveyed
by Stordahl et al. While the lack of cross resistance in
the single agent resistant A2780 cell lines does not prove
that the dual agent resistant line developed without



Figure 9 Comparison of changes in protein expression detected by immunoblotting. Normalized band densities of immunoblots (n = 3)
were used to calculate ratios between the parental and resistant lines which were considered to represent fold change in protein expression
between the parental and resistant lines. The fold changes were compared by one-way ANOVA followed by Tukey’s test to determine if there
was any significant difference among the cell lines in the expression of each protein and if the difference could be assigned to any cell line(s).
Significant difference between cell lines is indicated by lettering above the columns.
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cross resistance, it seems more likely that a genuine dual
resistance was generated in the A2780CBNDXL line and
not just a single agent resistance with cross resistance to
the opposite drug.

Proliferation of resistant cell lines
The rates of proliferation determined for each of the re-
sistant cells lines and the co-cultured control line show
that all the resistant lines have a reduced rate of prolif-
eration compared to the A2780 parental line (Figure 4).
While it is well known that malignant cells exhibit a
higher rate of proliferation than normal cells [66-68], it
is not as well-established that drug resistant cells may
also demonstrate an altered rate of proliferation. Gene
expression leading to increased cell proliferation and
drug resistance has been reported [69,70]. However,
reports of reduced cell proliferation associated with
increased drug resistance have also been made and an
association between multi-drug resistance and decreased
proliferation exists, which supports our observation of
decreased proliferation in not only the single agent re-
sistant but the dual agent resistant cell line [13,71,72].
Moreover, reduced proliferation in drug resistance may
not be so surprising when one considers that most cyto-
toxic chemotherapy agents are designed to target rapidly
proliferating cells; reduction of proliferation could be
one way to promote a drug resistant phenotype.

Microarray analysis of gene expression patterns in the
resistant A2780 cell lines
The number of unique changes in gene expression
detected in each cell line was similar (Figure 5). Consid-
ering the different mechanisms of action of carboplatin
and docetaxel, it is expected that the carboplatin and
docetaxel resistant cell lines should not have many changes
in gene expression in common. However, the relatively low
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amount of common gene expression changes between the
dual line and each of the single agent resistant lines indi-
cates that the majority of the changes in the dual line are
unique and not a simple combination of the patterns
present in each single agent resistant line. Furthermore, the
separation of the three resistant cell lines by principal com-
ponent analysis of all the genes with altered expression sup-
ports our claim of a distinct pattern of gene expression in
the dual resistant cell (Figure 6). Additional evidence for
the unique pattern of gene expression induced by simultan-
eous exposure of the cells to both carboplatin and docetaxel
is present in the hierarchical cluster analysis which shows a
different pattern of gene expression in all three resistant cell
lines (Figure 7). Based on these results, we can state that
development of resistance to more than one chemotherapy
agent has the potential to induce novel changes not asso-
ciated with resistance to each single agent.

Validation of microarray results
QPCR amplification of validation gene set transcripts con-
firmed the results of the microarray analysis, except for the
GSTO1 gene, which was not confirmed by QPCR as signifi-
cantly upregulated in the A2780CBN line, although expres-
sion was detected by microarray hybridization (Table 4,
Additional file 2: Table S2). The QPCR results were more
sensitive in detecting changes in gene expression not found
by microarray analysis. For example, 11 additional instances
of altered gene expression were detected by QPCR for
ANXA1, CDH11, CDH7, CYP1B1, FLRT3, GSTO2, LGI1,
MT2A, and PARP9 (Table 4). Fold changes were in the
same direction but the QPCR results often showed a much
greater change, e.g. the ABCB1 and ABCB4 gene expres-
sion detected by QPCR was around 10–1000 greater than
the microarray results (Table 4). The improved accuracy of
detecting gene expression by QPCR in our study may be
due to the design of the QPCR primers, which were based
on transcript specific sequences from the protein coding
transcript for each gene whereas the oligonucleotides used
in the microarray are designed to detect all possible tran-
scripts of a gene, including non-coding transcripts. There-
fore, our QPCR primers are more accurate in detecting
gene expression that is more likely to be associated with
protein expression and represent true genetic response to
drug selection.

QPCR confirmation of differences in gene expression
among the three resistant A2780 cell lines
The one way ANOVA followed by Tukey’s post hoc test
detected significant differences in expression among the
resistant cell lines as determined by QPCR. Based on
this analysis, four of the genes in the validation set of 16
genes, were found to be significantly different in the
A2780CBNDXL line. Although also significant in the
A2780CBN line, the AKR1C3 gene was expressed to a
significantly different extent mainly in the dual resistant
line. The role of aldoketoreductases in cisplatin and
multidrug resistance has been described in several differ-
ent types of cancer cells [43,45,73,74]. Therefore, the dis-
covery of a significant increase in AKR1C3 expression in
the dual drug resistant line supports a role for aldoketor-
eductases in combined carboplatin and docetaxel resist-
ance. The PARP9 gene was also mainly expressed in the
dual drug resistant line. PARP proteins, in particular
PARP 1, are involved in DNA repair and have become a
therapeutic target in BRCA mutant cancers [75-77]. A
direct role for PARP proteins has also been reported in
cisplatin resistance [78,79]. In this study we report a sig-
nificant increase in expression of PARP9 in the dual re-
sistant A2780CBNDXL line compared to the A2780CBN
line, extending the impact of PARP proteins to combined
carboplatin and docetaxel resistance. An additional two
genes that were mainly expressed in the dual line were
CDH11 and CDH7, with CDH11 being the most upregu-
lated gene in the dual line (1022 fold upregulated). Cad-
herins, in particular CDH1 (E-cadherin), are known to
contribute to invasiveness and stem cell like properties in
ovarian cancer [80-83]. E-cadherin-mediated intercellular
adhesion has also been shown to contribute to chemother-
apy resistance [84]. CDH11, however, is a classic type II
cadherin, known to be involved with bone morphogenesis
[85], and has been shown to play a role in epithelial to
mesenchymal transition [86]. As well, CDH11 mediates
cell adhesion [87,88] as does CDH7 [89,90], another clas-
sic type II cadherin, also significantly over expressed in
the dual line. Intercellular adhesion has been demon-
strated as an important factor in multidrug resistance
[72]. Therefore, the distinct upregulation of CDH11 and
CDH7 in the dual resistant A2780CBDXL cell line could
indicate a role for type II cadherin mediated cell adhesion
in this type of combined drug resistance.
The A2780CBN cell line contained most of the signifi-

cant difference for two genes, GCLC and GSTO2. GCLC
codes for γ-glutamylcysteine synthetase which controls
the rate limiting step in the synthesis of glutathione
while GSTO2 produces glutathione S-transferase omega
2. The combination of the two is known to play a role in
anticancer drug resistance, including cisplatin resistance
[11,91,92]. The increased expression of both genes in
the A2780CBN line confirms that the importance of the
glutathione pathway in carboplatin resistance, besides
cisplatin resistance. A novel change with most of the dif-
ference in expression contained in the A2780DXL line is
the upregulation of the LGI1 gene, which we have found
in another docetaxel resistant line (MCF7txt) (A. Paris-
senti, unpublished data). The LGI1 gene was originally
observed in glioma where increased expression of LGI 1
contributes to decreased proliferation of neuroblastoma
cells [93,94]. A decrease in proliferative capacity, as we
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observed for A2780DXL (Figure 3), could be promoted
by changes in genes like LGI1. Overexpression of cyto-
chrome enzymes, especially of the CYP 450 3A family
[95,96] are known to play a role in the metabolism of
docetaxel. However, the A2780DXL line contained most
of the significant difference for another cytochrome,
CYP1B1, which does not play a role in metabolism of the
drug although increased expression of CYP1B1 has been
shown to be associated with resistance to docetaxel [97].
However, an oxidized CYP1B1 estrogen metabolite has
been reported to inhibit tubulin polymerization [98].
Interestingly, expression levels of CYP1B1 are down regu-
lated in our A2780DXL line (Table 4, Additional file 3:
Figure S1), which contradicts the study by Martinez et al.
[97], but seems to support the role of docetaxel in inhibit-
ing tubulin polymerization reported by Sissung et al. [98].
Other genes found to be significantly different in the re-

sistant lines compared to the parent line, were not mainly
expressed in any one of the cell lines. The ABCB1 and
ANXA1 genes, although previously shown to be associated
with drug resistance [10,14] were significantly different in
all three cell lines, showing major changes in expression,
but without any one line containing most of the difference.
The remaining genes (Table 5) displayed a very similar
change in expression across the cell lines without signifi-
cant distribution of expression to one cell line.

Immunoblot confirmation of changes in protein
expression
Immunoblots were performed to determine if changes in
gene expression at the transcript level could be confirmed
at the protein expression level. Of the five successful
immunoblots, only the GCLC protein demonstrated a sig-
nificantly different degree of expression in a cell line; upre-
gulation in the A2780CBN cell line (Figures 8 and 9),
confirming the glutathione pathway as a strong compo-
nent of the resistance mechanisms in the A2780CBN cell
line. However, the immunoblot data confirm the ANOVA
results for both the ANXA1 and MT2A protein expres-
sion. As shown in Table 5, all three resistant cell lines dis-
play variable and quite different expression of ANXA1
transcripts and this is reflected by the immunoblot results
(Figures 8 and 9). Although the MT2A blots seem to show
a noticeable difference in the A2780DXL line, the fluctuat-
ing amounts of protein detected support the conclusion of
no significant difference among cell lines displayed in
Table 5. It is curious that both the ANXA1 and MT2A
blots contradict the expectation from the microarray data,
which indicated that expression of these two genes was
specific to the carboplatin resistant line. The CYP1B1 blot
follows the same trend of not supporting A2780DXL
specific down regulation although this was demonstrated
by both microarray and QPCR analysis. Finally, despite
lack of statistical significance, expression of the AKR1C3
protein tends to be greatest in the dual resistant
A2780CBNDXL line, which would support the micro-
array and QPCR results demonstrating a significant as-
sociation of this gene with combined carboplatin and
docetaxel resistance. The low concordance between the
microarray, Q-PCR and protein expression data is not
entirely surprising as this has been observed in other
studies of gene and protein expression [99-101]. These
studies show that there is not always a direct correlation
between transcription levels and translation of a gene
product, which indicates that caution should be observed
in assuming that gene expression data can predict protein
levels. Accurate knowledge of gene translation requires as-
sessment of protein expression.

Conclusions
In this study, we report the establishment of a novel cell
line with documented resistance to both carboplatin and
docetaxel. Microarray analysis and QPCR confirmation of
changes in expression of selected genes show that the dual
resistant cell line contains specific genetic alterations not
present in either carboplatin or docetaxel resistant cell lines
which were selected in an identical manner in the same
study using the same source of A2780 cells. These results
demonstrate that combined drug resistance is not just a
simple combination of changes present in single agent re-
sistant cells but can contain novel and different changes.
The dual carboplatin-docetaxel resistant cell line will facili-
tate further investigation into mechanisms underlying the
development of dual drug resistance in ovarian cancer.
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Additional file 1: Table S1. Primer sequences and melting
temperatures.

Additional file 2: Table S2. Determination of significant difference
between the parent and resistant cell lines according to QPCR analysis.

Additional file 3: Figure S1. Comparison of gene expression changes
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