
Zhong et al. Journal of Ovarian Research  (2015) 8:25 
DOI 10.1186/s13048-015-0152-4
RESEARCH Open Access
Inhibition of STAT3 signaling as critical molecular
event in resveratrol-suppressed ovarian cancer
cells
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Abstract

Background: Resveratrol exerts inhibitory effects on ovarian cancer cells, while its underlying mechanism and
critical molecular target(s) have been lesser known. Activations of Wnt, Notch and STAT3 signaling are frequent in
ovarian cancers/OCs and supposed to be important for OC formation and progression, while the impacts of
resveratrol on these signaling pathways in OC cells remain obscure.

Methods: In this study, two human ovarian cancer cell lines, OVCAR-3 and CAOV-3, were treated by 120 μM
resveratrol and their responses to the treatment and the statuses of Wnt, Notch and STAT3 signaling in them
were analyzed by multiple experimental approaches. Selective inhibitors of Wnt, Notch or STAT3 signaling were
employed to treat OVCAR-3 and CAOV-3 cells to elucidate the significance of individual signaling pathways for
ovarian cancers.

Results: The results demonstrated distinct inhibitory effects of resveratrol on human ovarian cancer cells in terms of
remarkable G1 phase accumulation, increased apoptosis fraction and concurrent suppression of Wnt, Notch and
STAT3 signaling as well as their downstream cancer-related gene expression. Treatments with Wnt, Notch or STAT3
selective inhibitor revealed that only AG490, a JAK-specific inhibitor, inhibits OVCAR-3 and CAOV-3 cells in the extent
as similar as that of resveratrol.

Conclusion: Our results suggest the significance of STAT3 activation in the maintenance and survival of ovarian
cancer cells. The activated STAT3 signaling is the critical molecular target of resveratrol. Resveratrol would be a
promising candidate in the management of ovarian cancers, especially the ones with resistance to conventional
therapeutic agents.
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Introduction
Ovarian cancer (OC) is one of the commonest female ma-
lignancies and accounts for the leading death rates among
the gynecologic cancers [1,2]. The main reasons of the
poor prognosis of OCs are the delayed diagnosis due to the
very subtle symptoms at the early stage of ovarian carcino-
genesis [3] and the easiness of spreading through blood
dissemination [4] and peritoneal transplantation [5,6]. Sur-
gical treatment is the first choice to remove ovarian can-
cers if the tumours are well-differentiated, in relative small
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sizes and/or confined to the ovary [7,8]. However, the pa-
tients with advanced OCs have to be operated for debulk-
ing the disease and then treated by standard chemotherapy
such as a dose-dense paclitaxel and carboplatin regimen
[9,10]. Although the therapeutic outcome has been im-
proved by more accurate staging of the disease and more
aggressive surgical excision of tumor spots in the abdo-
men, the overall survival rates remain unoptimistic be-
cause of the frequent tumour recurrence and severe toxic
effects of the anticancer agents [11-13]. For these reasons,
it would be necessary to explore more efficient and lesser
toxic agent(s) with clearer molecular targets for better ad-
juvant management of ovarian cancers.
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Resveratrol (3,5,4′-trihydroxy-trans-stilbene) has been
regarded as a non-toxic polyphenolic compound that can
be found in grapes, berries, peanuts and red wine [14]. A
body of evidence has demonstrated that resveratrol is able
to inhibit the growth of many cancers such as bladder
cancer, breast cancer and primary brain tumors [15-17].
Increasing data have shown that resveratrol can exert its
biological effects on cancer cells by altering multiple mo-
lecular targets [18,19]. For example, it suppresses growth
and induces apoptosis of human medulloblastoma cells
accompanied with inhibition of STAT3 activation and
transcription [18]. More importantly, the anticancer doses
(100 μM to 200 μM) of resveratrol have little harmful ef-
fect on glial cells and neurons in central nervous system
and transitional epithelial cells of the urinary bladder
[15,17,19]. The inhibitory effects of resveratrol on ovarian
cancer cells have been documented as well [20,21]. Al-
though some studies have shown certain molecular alter-
ations in resveratrol-treated ovarian cancer cells, such as
down-regulation of Akt/GSK signaling [22] and VEGF ex-
pression [23], the critical event(s) among those alterations
remains largely unknown. It is therefore necessary to ad-
dress this point by comprehensively analyzing the statuses
of ovarian cancer-related signaling pathways as well as
their downstream genes.
Some signaling transduction pathways are found to be

activated in the processes of ovarian carcinogenesis and
play favorable roles in cell growth and survival [24-26].
For instance, hyperactive Jaks/STAT3 signaling promote
enhanced colony-forming ability, motility and migration
of cisplatin-resistant ovarian cancer cells [27]. Similarly,
Wnt/beta-catenin pathway also contributes to the prolif-
eration of human ovarian cancer cell [28] and inhibition
of Notch signaling, a key pathway for ovarian cancer stem
cells, sensitizes tumors to platinum therapy [25]. The data
obtained from other cancer systems reveal that resveratrol
can inhibit the signaling pathways mediated by STAT3,
Wnt and Notch when exerting its cancer suppressive ef-
fects [18,29,30]. The current study thus refers to the above
findings as a cue and/or a cutting edge to identify the crit-
ical molecular event(s) caused by resveratrol in ovarian
cancer cells.

Materials and methods
Cell culture and treatment
Human ovarian cancer CAOV-3 cells [31] were cultured
in Dulbecco’s modified Eagle’s essential medium (DMEM)
containing 12% fetal bovine serum (Gibco Life Science,
Grand Island, NY, USA) under 37°C and 5% CO2 condi-
tion and OVCAR-3 cells [32] in Roswell Park Memorial
Institute 1640 Medium (RPMI1640) under 37°C and 5%
CO2 condition. The cells (5 × 104/ml) were plated to cul-
ture dishes (NUNC, Denmark) and incubated for 24 h be-
fore the experiments. Meanwhile, dozens of cell-bearing
coverslips were concurrently prepared using the Nest-
Dishes (Nest Biotech. Inc., Wuxi, China; China invention
patent No. ZL200610047607.8); they were collected from
Nest-Dishes, incubated under different experimental con-
ditions and then harvested for H/E morphological stain-
ing, immunocytochemical (ICC) labeling and TUNEL
assay. Resveratrol (Res; Sigma Chemical, Inc, St. Louis,
MO, USA) was dissolved in dimethylsulfoxide (DMSO;
Sigma) and diluted with culture medium to the working
concentrations just before use. The cells were treated by
100 μM [16,18,19] or 120 μM Res for 72 hours. The nor-
mally cultured cells and the cells treated by 0.2% DMSO
were used as normal and background controls, respect-
ively. Cell numbers and viabilities were checked in 24 h
intervals. The experimental groups were set in triplicate
and the experiments were repeated at least for three times
to establish confidential conclusion.

Evaluation of cell growth
The effects of resveratrol on cell proliferation were de-
termined by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-
tetrazolium bromide (MTT) assay [17]. The results were
shown as percentage of cell viability (OD of the experi-
ment samples/OD of control) or OD values. And the frac-
tions of viable and unviable cells in normally cultured
and resveratrol-treated populations were estimated with
cell counting apparatus (TC20 Automated Cell Counter,
BIO-RAD Inc., Singapore). Terminal deoxynucleotide
transferase (TdT)–mediated dUTP-biotin nick-end label-
ing (TUNEL) assay was employed to detect apoptotic cells
according to producer’s instructions (Promega Corpor-
ation, USA). Haematoxylin and eosin (H/E) staining was
performed on the three groups of OVCAR-3 and CAOV-3
cells to evaluate their morphological features.

Flow cytometry
The harvested cells of the experimental groups were fixed
in 70% ethanol for staining with DNA dye, and then sus-
pended in 0.5 ml to 1 ml of propidium iodide solution
containing RNase and incubated at 37°C for 30 minutes.
Cell cycle profiles and cell apoptotic fractionations were
obtained with a FACSvantage flow cytometer (Becton
Dickinson, San Jose, CA, USA) and the data were analyzed
with ModFit software (Verity Software House, Inc, Topsham,
ME). The analyses were repeated for three times to estab-
lish confidential conclusion.

Immunocytochemical staining
Immunocytochemical staining (ICC) was performed on
the cell-bearing coverslips of the three experimental groups
by the method described previously [18]. The antibodies
against human STAT3, p-STAT3, Notch1, Notch2, HES1,
Wnt2, β-catenin, E-cadherin, Bcl-2, c-Myc, survivn were
purchased from Santa Cruz Biotechnology, Inc, CA and



Table 1 Sequences of RT-PCR Primers and their generated
product

Parameters Primer sequences Product
size (bp)

Reference

Notch1 F:5′ - TGT GAC AGC CAG
TGC AAC TC - 3′

577 [29]

R:5′ - TGG CAC TCT GGA
AGC ACT GC - 3′

Notch2 F:5′-AAT GTC ATG GCC GCT
TCA GAG-3′

533 [29]

R:5′-TCG TGC AAG AGC
CAG TTA CCC-3′

Hes1 F:5′ - CCA GTT TGC TTT
CCT CAT TCC - 3′

240 [29]

R:5′ - TCT TCT CTC CCA
GTA TTC AAG TTC C - 3′

Wnt2 F:5′ - GCC ACA CGC TGC
ACC TAA AGC - 3′

379 [30]

R:5′ - CAA TTA CCC TAA
GGG TGG TAG C - 3′

β-catenin F:5′-TGA TGG AGT TGG
ACA TGG CCA TGG-3′

570 [53]

R:5′-CAG ACA CCA TCT
GAG GAG AAC GCA-3′

E-cadherin F:5′-GAC GCG GAC GAT
GAT GTG AAC-3′

281 [30]

R:5′- TTG TAC GTG GTG
GGA TTG AAG A-3′

STAT3 F:5- GGG TGG AGA AGG
ACA TCA GCG GTA A-3′

298 [15]

R:5′- GCC GAC AAT ACT
TTC CGA ATG C −3′

survivin F:5′-GGC ATG GGT GCC
CCG ACG TTG-3′

439 [15]

R:5′-CAG AGG CCT CAA
TCC ATG GCA-3′

c-Myc F:5′-TGG TCT TCC CCT
ACC CTC TCA AC −3′

265 [15]

R:5′-GAT CCA GAC TCT
GAC CTT TTG CC −3′

Bcl-2 F:5′-TTT GAG TTC GGT
GGG GTC AT −3′

275 [54]

R:5′-TGA CTT CAC TTG
TGG CCC AG −3′
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HES1 was provided by Dr. Tetsuo Sudo as a generous gift
[29]. Color reaction was developed using 3, 3′-diamino-
benzidine tetrahydrochloride (DAB). According to the la-
beling intensity, the staining results were evaluated by two
independent researchers and scored as negative (−) if no
immunolabeling was observed in target cells, weakly posi-
tive (+) if the labeling was faint, moderately positive (++),
and strongly positive (>++) when the labeling was stronger
or distinctly stronger than (++).

RNA isolation and RT-PCR
Sample RNAs were isolated from the two ovarian cancer
cell lines cultured under different conditions for 48 hours
using Trizol solution (Life Technologies, Grand Island,
NY, USA). By the method described elsewhere [8], reverse
transcription (RT) was performed on RNA samples,
followed by polymerase chain reaction (PCR) with a pair
of primers specific for the cDNA of an individual gene
(Table 1). The PCR products were resolved on 1% agarose
gel containing ethidium bromide (0.5 μg/ml), visualized
and photographed using UVP Biospectrum Imaging Sys-
tem (UVP, Inc, Upland, CA). The β-actin PCR products
generated from the same RT solution were cited as quanti-
tative controls.

Protein preparation and Western blotting
Total cellular proteins were prepared from the cells under dif-
ferent culture conditions. The sample proteins (50 μg/well)
were separated in 10% sodium dodecylsulfate-polyacrylamide
gel electrophoresis and transferred to polyvinylidene difluor-
ide membrane (Amersham, Buckinghamshire, UK). The
membrane was blocked with 5% skimmed milk in TBS-T
(10 mM Tris–HCl, pH8.0, 150 mM NaCl and 0.5% Tween
20) at 4°C, rinsed 10 minutes for three times with TBS-T,
followed by 3 h incubation at room temperature with the
first antibody in appropriate concentrations (Notch1: 1:800;
Notch2: 1:800; Hes1: 1:2500; Wnt2: 1:800; β-catenin: 1:800;
E-cadherin: 1:600; STAT3: 1:800; Bcl-2: 1:800; c-Myc:
1:600; survivin: 1:800), and then 1 h incubation with HRP-
conjugated anti-mouse or anti-rabbit IgG (Zymed Lab, Inc).
The bound antibody was detected using the enhanced
chemiluminescence system (Roche GmbH, Mannheim,
Germany). After removing the labeling signal by incuba-
tion with stripping buffer [8], the membrane was reprobed
with other antibodies one by one until all of the parame-
ters were examined.

Selective inhibition of activated Wnt, Notch and STAT3
signaling
L-685,458 (Calbiochem, San Diego, CA) is a potent and
selective γ-secretase inhibitor, which inhibits Notch acti-
vation [33]. XAV-939 (Selleck, Houston, Texas, USA) se-
lectively suppresses the transcription of Wnt/β-catenin
through inhibiting tankyrase1/2 [34]. AG490 (Sigma, Inc,
St. Louis, MO), a JAK-specific inhibitor, can suppress
STAT3 signaling by inhibiting Tyr705 phosphorylation of
STAT3 protein [19]. To evaluate the importance of the
three signalling pathways in the growth and survival of
ovarian cancer cells, CAOV-3 and OVCAR-3 cells were
treated by 8 μM L-685,458, 10 μM XAV-939 and 80 μM
AG490, respectively [35]. The treatments lasted for 72
hours and the cells were observed in 12 hour intervals.
The cell bearing coverslips prepared from each of the
treatments were subjected to further analyses. The experi-
ments were repeated for 3 times.
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Statistical analysis
MTT data and cell counting were evaluated with the
independent-samples t-test and one-way ANOVA. Stat-
istical significance was defined as P < 0.05.
Figure 1 Evaluation of cellular responses of human ovarian cancer CAOV-3
proliferation assay performed on the two cell lines cultured normally (N) an
or with 100 μM and 120 μM resveratrol supplementation (Res) for 48 hours
μM resveratrol-treated CAOV-3 and OVCAR-3 cells at 24 h, 48 h and 72 h p
B. Hematoxylin and eosin morphological staining (H/E) and TUNEL apopto
and apoptosis in CAOV-3 and OVCAR-3 cells after 120 μM resveratrol treatm
Results
Resveratrol caused growth arrest and apoptosis
MTT assay and viable cell counting were performed
in 24 hour intervals, which revealed that resveratrol
and OVCAR-3 cells to 120 μM resveratrol treatment. A. (a) MTT cell
d incubated in 0.02% DMSO containing medium without (DMSO)
. *, compared with N group, P < 0.05, (b) Viable cell counting of 120
oints. *, P < 0.05 in comparison with data collected at 24 h point.
tic cell assay. C. Flow cytometry determination of cell cycle distribution
ent for 48 hours.
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suppressed the growth of CAOV-3 and OVCAR-3 cells
in dose- and time-related fashions and CAOV-3 cells
were more sensitive to drug treatments (Figure 1A). H/E
staining and TUNEL assay showed frequent apoptotic
death in resveratrol-treated cell populations (Figure 1B).
Flow cytometry demonstrated that 120 μM resveratrol
treatment caused distinct G1-phase arrest of the two OC
cell lines accompanied with increased apoptotic fractions
of OVCAR-3 (16.37%) and CAOV-3 cells (10.11%) at 48
hour time point. As shown in Figure 1C, the G1 and S
fractions were 47.0% and 53.0% in normally cultured
CAOV-3 cells, which changed to 79.42% and 20.58% in
their resveratrol-treated counterpart. Similarly, G1 and S
fractions were 40.79% and 59.22% in the normally cul-
tured and 90.34% and 9.66% in the resveratrol-treated
OVCAR-3 cells.

Differential responses of Notch1 and Notch2 to resveratrol
ICC staining (Figure 2) showed that Notch1 and Notch2
as well as their downstream gene HES1 were expressed
Figure 2 Examination of Notch1, Notch2 and HES1 expression in CAOV-3 and O
by immunocytochemical staining (A), Western blotting and RT-PCR (B). Densitom
in OVCAR-3 and CAOV-3 cells; upon resveratrol treat-
ment, Notch2 and HES1 expression were suppressed in
both CAOV-3 and OVCAR-3 cells, while the expression
levels of Notch1 was weakly increased in the former and
decreased in the later cell line. The results of Western
blotting and RT-PCR were in consistence with ICC find-
ings in terms of down-regulated Notch2 and HES1 in
both cell lines and the differential Notch1 expression in
resveratrol-treated OVCAR-3 and CAOV-3 cells.

Resveratrol altered β-catenin intracellular distribution
patterns
As shown in Figure 3A, Wnt2 was expressed in OVCAR-3
and CAOV-3 cells. β-catenin proteins were distributed in
both the cytoplasmic space and the nuclei of CAOV-3, while
they were mainly located in the cytoplasm of OVCAR-3
cells. After resveratrol treatment, Wnt2 was down-regulated
(Figure 3B) and nuclear labeling of β-catenin became rare in
CAOV-3 cells. In the case of resveratrol-treated OVCAR-3
cells, the level of Wnt2 expression remained almost
VCAR-3 cells without (N) and with 48 hour 120 μM resveratrol treatment (Res)
etry analyses were conducted on each of the Western and RT-PCR images.



Figure 3 Examination of Wnt2, β-catenin and E-cadherin expression patterns in CAOV-3 and OVCAR-3 cells without (N) and with 48 hour 120 μM
resveratrol treatment (Res) by immunocytochemical staining (A), Western blotting and RT-PCR (B). Densitometry analyses were conducted on
each of the Western and RT-PCR images.

Zhong et al. Journal of Ovarian Research  (2015) 8:25 Page 6 of 11
unchanged, while membrane-labeling of β-catenin was
clearly observed. E-cadherin, a β-catenin binding integral
protein, was expressed in OVCAR-3 cells and was en-
hanced after resveratrol treatment; in contrast, it was un-
detectable in CAOV-3 cells in both RNA and protein
levels irrespective to resveratrol treatment.

Inhibition of STAT3 expression in resveratrol-treated
OC cells
The effects of resveratrol on STAT3 signaling in the two OC
cell lines were analyzed by immunocytochemical, Western
blotting and RT-PCR approaches. It was found that STAT3
was expressed in the normally cultured OVCAR-3 and
CAOV-3 cells with distinct nuclear translocation (Figure 4A).
STAT3 was down-regulated either in transcriptional or
in translational levels in resveratrol-treated ones with re-
duced nuclear labeling of phosphoralated-STAT3 (Figure 4A
and B). For instance, p-STAT3 was predominantly localized
in the nuclei of OVCAR-3 cells and became weakened after
resveratrol treatment for 48 hours.

Resveratrol downregulated tumor promoter genes
Survivin, c-Myc and Bcl-2 play active roles in cell pro-
liferation and maintenance of ovarian cancers [36-38]
and are known as the common target genes of Wnt,
Notch and STAT3 signaling [17]. Therefore, their ex-
pression statuses in the two OC cell lines without and
with resveratrol treatment were analyzed. As shown in
Figure 5, the expression levels of c-Myc and especially
survivin and Bcl-2 were decreased in both CAOV-3



Figure 4 Effects of resveratrol on STAT signaling in ovarian cancer cells. A. Immunocytochemical illustration of the levels and intracellular
distribution phosphorylated STAT3 in CAOV-3 and OVCAR-3 cells without (N) and with 48 hour 120 μM resveratrol treatment (Res). B. Western blot
and RT-PCR analyses of STAT3 expression levels performed in parallel with immunocytochemical staining.
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and OVCAR-3 cells in comparison with their normally
cultured counterparts.

Different effects of selective Notch, Wnt and STAT3
inhibitors
To evaluate potential biological significance of activated
Notch, Wnt and STAT3 signaling in the two OC cells,
the selective inhibitors of the three signaling pathways
were used to treat OVCAR-3 and CAOV-3 cells, re-
spectively. The results revealed that although 8 μM
L-685,458 blocked Notch activation in the two cell lines
in terms of reduced cytoplasmic distribution and nuclear
labeling of HES1 proteins, this treatment neither caused
growth arrest nor cell death (Data not shown). Wnt in-
hibitor XAV-939-treated OVCAR-3 and CAOV-3 cells
showed reduction of cytoplasmic distribution and nu-
clear translocation of β-catenin but no distinct morpho-
logic change and growth inhibition could be observed in
comparison with their normally cultured counterparts
(Figure 6A and B). STAT3 phosphorylation was inhibited
in OVCAR-3 and CAOV-3 cells upon 80 μM AG490
treatment for 48 hours, accompanied with similar growth
suppression rates (74%) as that of resveratrol-treated pop-
ulations (68%) in OVCAR-3 cells and 82% versus 77% in
CAOV-3 cells (Figure 6A-C).
Discussion
Ovarian cancer is one of the most lethal malignancies due
to its strong spreading tendency via different dissemin-
ation routes including peritoneal implantation [6,39]. Be-
cause of the difficulty to remove cancer cells radically,
adjuvant chemotherapy is employed to reduce the risk of
tumor relapse [40]. Nevertheless, the therapeutic outcome
of OC patients is not optimistic due to the frequent drug
resistance of cancer cells and severe toxic effects of anti-
cancer drugs [41,42]. Apparently, more effort should be
made to explore safer and more effective agent for ovarian
cancer patients. It has been known that the anticancer
doses of resveratrol are non-toxic to some kinds of normal
cells/tissues [15,43], suggesting the potential values of
this compound in the treatment of human cancers. Res-
veratrol also exerts inhibitory effects on ovarian cancer
cells [21,22]. The current study further demonstrates that
the resveratrol sensitivities of ovarian cancer cells are not
identical, because 100 μM resveratrol is sufficient to cause
G1 phase arrest and remarkable apoptosis in CAOV-3
while a dose of 120 μM is required to induce similar cellu-
lar events in OVCAR-3 cells. Although the underlying
reason(s) leading to the differential resveratrol sensitivities
remains to be disclosed, our results have potential transla-
tional values because 1) both OVCAR-3 and CAOV-3



Figure 5 Examination of c-Myc, survivin and Bcl-2 expression in CAOV-3 and OVCAR-3 cells without (N) and with 48 hour 120 μM resveratrol
treatment (Res) by immunocytochemical staining (A), Western blotting and RT-PCR (B).

Zhong et al. Journal of Ovarian Research  (2015) 8:25 Page 8 of 11
cells are resistant to cis-platinum (cis-diamminedichlor-
oplatinum), a commonly used agent in anti-OC therapy
[43,44], 2) 120 μM resveratrol is harmless to normal
neural and urothelial cells in vivo [15,45] and 3) long-
term intra peritoneal administration of 150 mg (657
μM)/kg/per day resveratrol dose not affect the life qual-
ity of the rats including the reproductive ability [Li-Xia
Zhong et al. unpublished data]. In this context, it would
be considered that resveratrol may be a promising can-
didate to treated ovarian cancers, especially those with
cis-platinum resistance.
A body of evidence suggests that many molecular al-

terations occur during ovarian carcinogenesis, of which
the activated Notch, Wnt and STAT3 signaling pathways
are supposed to play active roles in the carcinogenic
process by up-regulating the expression of some tumor
promoting genes such as c-Myc, survivin and Bcl-2
[46,47]. On the other hand, resveratrol possesses multifa-
ceted targeting capacities [48,49] and the cancer-associated
signaling pathways mediated by STAT3, Wnt2 and/or
Notch1/2 have been known as its molecular targets [35].
Although the inhibitory effects of resveratrol on ovarian
cancer cells have been documented, the critical molecular
event(s) caused by resveratrol remain largely unknown. In
this study, the statuses of STAT3, Notch and Wnt2 signal-
ing in OVCAR-3 and CAOV-3 cells and the influences of
resveratrol in them are investigated. It is revealed that
all of the three signaling pathways are activated in the



Figure 6 Demonstration of inhibitory effects of selective STAT3 inhibitor AG490 on the proliferation and STAT3 phosphorylation in CAOV-3 and
OVCAR-3 cells by Hematoxylin and eosin morphological staining (A), MTT cell proliferation assay (B), viable and unviable cell counting (C) and
p-STAT3 oriented immunocytochemical staining (D). Normally cultured (N), resveratrol-treated (Res) and Wnt selective inhibitor XAV939-treated
cells (XAV939) were cited as normal, effective and ineffective controls, respectively.
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two cell lines because of the co-existence of nuclear trans-
locations of phosphorylated STAT3 (p-STAT3), HES1 and
β-catenin. After resveratrol treatment, nuclear labeling of
p-STAT3, β-catenin and HES1 become rare and weak-
ened, indicating the concurrent inhibition of the biological
activities of STAT3, Notch and Wnt2 signaling by this
multi-targeting compound and its correlation with the
suppressed growth of ovarian cancer cells.
c-Myc, Bcl-2 and survivin are well known cancer pro-

moter genes and their transcription can be triggered by
STAT3, Notch and Wnt signaling, respectively [18,46,47].
In accompany with distinct growth arrest and apoptosis,
the expression of these three genes is down-regulated in
resveratrol-treated OVCAR-3 and CAOV-3 cells, which
may be considered as the consequence of concurrent
STAT3, Notch and Wnt inactivation. It has been recog-
nized that reduction or absence of membrane E-cadherin
distribution indicates the dedifferentiation states of epithe-
lial cells and is one of the major reasons of β-catenin cyto-
plasmic accumulation and nuclear translocation [50,51].
In resveratrol treated OVCAR-3 cell population, the level
of E-cadherin expression is increased and more abundant
β-catenin membrane distribution can be observed, indicating
the favorable effects of resveratrol on cell differentiation
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and inhibitory effect on Wnt signaling. Based on this
notion, the lack of membranous β-catenin labeling of
resveratrol-treated CAOV-3 cells would be largely due to
the silenced E-cadherin expression. Even though, CAOV-3
cells remain sensitive to resveratrol, suggesting that the
presence or absence of E-cadherin expression and β-catenin
nuclear translocation may not be the critical factor in deter-
mining the responsiveness of OC cells to resveratrol.
Although resveratrol suppressed STAT3, Notch and Wnt

activations have been evidenced in OVCAR-3 and CAOV-3
cells, it is still unclear which of them are/is closely linked
with resveratrol-caused cell crisis. To address this issue,
the two ovarian cancer cells are treated by selective inhibi-
tors of Notch, Wnt and STAT3 respectively and their re-
sponses are compared with that of their resveratrol-
treated and normally cultured counterparts. The results
reveal that Notch inhibitor L-685,458 and Wnt inhibitor
XAV-939 efficiently block nuclear translocations of HES1
and β-catenin, but neither of them leads to distinct growth
inhibition of OVCAR-3 and CAOV-3 cells. On the other
hand, STAT3 inhibitor AG490 suppresses proliferation
and induces apoptosis in the extents as similar as that of
resveratrol-treated cells. These findings thus suggest 1)
the critical roles of STAT3 activation in the growth and
survival of human ovarian cancer cells and 2) STAT3 sig-
naling as the common oncotarget of resveratrol in cancer
cells with different origins [52]. Although simply block of
Notch or Wnt signaling transduction has little inhibitory
effect on the two OC cell lines so far checked, the implica-
tions of their inactivation can not been overlooked be-
cause of their compensatory roles in regulating the
expression of ovarian cancer-related genes including the
ones examined in this study.

Conclusion
Our current study demonstrate the efficiencies of resvera-
trol in inhibiting human ovarian cancer cells in terms of
remarkable G1 phase accumulation, increased apoptosis
fraction and concurrent suppression of Wnt, Notch and
STAT3 signaling as well as their downstream cancer-
related gene expression. Treatments with Wnt, Notch or
STAT3 selective inhibitor reveal that only AG490, a JAK-
specific inhibitor, inhibits OVCAR-3 and CAOV-3 cells in
the extent as similar as that of resveratrol, suggesting the
importance of STAT3 activation in the maintenance and
survival of ovarian cancer cells. It is therefore possible that
the activated STAT3 signaling is the critical molecular tar-
get of resveratrol and this polyphenol compound would
be an alternative option in the management of ovarian
cancers, especially the ones insensitive to conventional
therapeutic drugs.
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