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Abstract
Background  Artificial Intelligence entails the application of computer algorithms to the huge and heterogeneous 
amount of morphodynamic data produced by Time-Lapse Technology. In this context, Machine Learning (ML) 
methods were developed in order to assist embryologists with automatized and objective predictive models able to 
standardize human embryo assessment. In this study, we aimed at developing a novel ML-based strategy to identify 
relevant patterns associated with the prediction of blastocyst development stage on day 5.

Methods  We retrospectively analysed the morphokinetics of 575 embryos obtained from 80 women who 
underwent IVF at our Unit. Embryo morphokinetics was registered using the Geri plus® time-lapse system. Overall, 30 
clinical, morphological and morphokinetic variables related to women and embryos were recorded and combined. 
Some embryos reached the expanded blastocyst stage on day 5 (BL Group, n = 210), some others did not (nBL Group, 
n = 365).

Results  The novel EmbryoMLSelection framework was developed following four-steps: Feature Selection, Rules 
Extraction, Rules Selection and Rules Evaluation. Six rules composed by a combination of 8 variables were finally 
selected, and provided a predictive power described by an AUC of 0.84 and an accuracy of 81%.

Conclusions  We provided herein a new feature-signature able to identify with an high performance embryos with 
the best developmental competence to reach the expanded blastocyst stage on day 5. Clear and clinically relevant 
cut-offs were identified for each considered variable, providing an objective tool for early embryo developmental 
assessment.
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Introduction
To date, an objective method to evaluate human embryo 
competence is still lacking, as conventional morphology 
is highly subjective, being performed using a wide range 
of grading systems affected by inter and intra-observer 
variability [1]. Indeed, consistency and reproducibility 
of embryo evaluation are still not guaranteed among dif-
ferent IVF laboratories [2]. In addition, standard grading 
only provides a momentary view of embryonic mor-
phology at a specific time point, while developmental 
changes over multiple time points may provide a more 
robust judgement of embryo potential [3]. More than a 
decade ago, Time-Lapse Technology (TLT) has been 
introduced to perform a real-time, dynamic observa-
tion of pre-implantation embryo development. Mor-
phokinetic events can be monitored at the exact time of 
occurrence, providing new insights into several steps of 
in vitro growth and, ultimately, suggesting objective data 
with potential clinical relevance [4]. TLT was claimed by 
some authors to improve embryo selection and IVF out-
come [3–6]. However, its efficacy is still matter of debate 
[7–10], being mainly ascribed to unperturbed culture 
conditions (temperature, atmosphere), rather than to the 
improved identification of reliable morphokinetic bio-
markers of embryo competence [8, 11]. Indeed, the real 
time observation of crucial events occurring during in 
vitro growth revealed a number of parameters that were 
associated to embryo development potential [4]. Looking 
forward, significant improvements of the technologies 
associated to TLT will drive a more detailed knowledge 
and understanding of the early developmental kinetics of 
human embryos [12].

Recently, Artificial Intelligence (AI) has rapidly devel-
oped in various fields, including human embryology [13, 
14]. Artificial intelligence (AI) may be used as a tool to 
assist embryologists in daily activities (e.g. morphologi-
cal selection of embryos to transfer or cryopreserve), as 
it is able to analyse a huge number of heterogeneous data, 
such as those relating to embryo development provided 
by TLT systems [15, 16]. Machine Learning (ML) algo-
rithms allow the identification of the most relevant vari-
ables (also called features) included in a bulk set of data, 
and may be used to develop complex prediction models 
of embryo growth [17, 18]. Among the above-mentioned 
models, however, no one was able to identify clear and 
clinically relevant cut-offs for morphodynamic features 
to provide an objective tool to assist embryologists dur-
ing embryo assessment.

In the present study, we aimed (i) at developing a novel 
ML framework using quantifiable values for both mor-
phological and morphokinetic data of 575 in vitro-pro-
duced embryos, and (ii) at identifying which features of 
early embryo morphokinetics had key relevance in pre-
dicting the timely (day 5) growth to expanded blastocyst.

Material and methods
Patient cohorts
Training cohort
The study was carried out in accordance with the Dec-
laration of Helsinki and was authorized as a retrospec-
tive observational study by the local Ethical Committee 
(authorization number: 0056908). A signed informed 
consent was obtained from all patients. The analysis 
included 575 embryos obtained in 80 IVF cycles per-
formed at Physiopathology of Reproduction and IVF 
Unit of S. Anna Hospital (Turin, Italy) in 80 women 
(included only once) receiving the transfer in uterus of 
a single fresh blastocyst on day 5 between March 2018 
and March 2020. We selected this patient population in 
order to have at least one viable blastocyst on day 5 to 
include into our analysis. These patients had mean age 
35.3 ± 3.5 years (range 25–42), body mass index 24.2 ± 4.8 
(range 18–25), ovarian reserve markers suggesting nor-
mal responsiveness to FSH stimulation (serum day 3 
FSH < 12 IU/l, antral follicle count 8–18, anti-mullerian 
hormone 2.5−4 ng/ml) and were all stimulated using the 
GnRH-agonist “long” protocol. Patients with polycystic 
ovary syndrome (PCOS), ovarian endometriosis and/or 
unfavourable biomarkers leading to an expected poor/
sub-optimal responsiveness to FSH [19] were excluded. 
Patients’ clinical characteristics and variables related to 
IVF cycle were recorded, including the total dose of exog-
enous gonadotropins, the number of retrieved COCs 
(cumulus-oocyte complexes), the ovarian sensitivity 
index (OSI = retrieved COCs×1000/total gonadotropin 
dose) [20], the fertilization, cleavage, and viable blasto-
cyst (day 5 + day 6) formation rate.

Validation cohort
The performance of the selected rules was tested by five 
classification algorithms on an independent validation 
cohort of 81 embryos obtained from other 10 patients 
receiving the transfer in uterus of a single fresh blasto-
cyst on day 5 between February and March 2020. These 
patients had mean age 35.5 ± 3.1 years (range 25–42), 
body mass index 24.6 ± 2.6 (range 18–25), ovarian reserve 
markers suggesting normal responsiveness to FSH stim-
ulation (serum day 3 FSH < 12 IU/l, antral follicle count 
8–18, anti-mullerian hormone 2.5−4 ng/ml) and were all 
stimulated using the GnRH-agonist “long” protocol.

Controlled ovarian stimulation and IVF procedures
The gonadotropin-releasing hormone (GnRH)-agonist 
“long” protocol with recombinant FSH (Gonal-F®, Merck, 
Germany) at individually tailored daily dose (100–300 IU 
s.c.) was always used to carry out controlled ovarian stim-
ulation (COS). However, the observed results are likely to 
be applyable also to GnRH-antagonist cycles, as a previ-
ous study demonstrated that the OSI is not significantly 
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affected by the type of pituitary suppression, being highly 
consistent when the same patient undergoes GnRH-ago-
nist “long” protocol and then GnRH-antagonist protocol 
or vice-versa [21]. Circulating estradiol (E2) assessment 
and transvaginal ultrasound (US) examination were per-
formed every second day from stimulation day 7 in order 
to monitor follicular growth. The FSH dose was adjusted 
accordingly. A single subcutaneous injection of 10,000 IU 
hCG (Gonasi HP, IBSA, Switzerland) was administered 
to trigger ovulation when at least two follicles reached 
18  mm mean diameter, with appropriate E2 levels. US-
guided oocyte retrieval (OPU) was performed 35–37  h 
after hCG trigger under local anaesthesia (paracervical 
block).

Sperm concentration, motility, and morphology were 
assessed according to the World Health Organization 
guidelines [22]. Raw semen was assessed for both pro-
gressive and non-progressive motility. After density gra-
dient centrifugation, sperm motility was expressed in 
terms of concentration of activated cells with progressive 
motility.

At OPU, the aspirated follicular fluids were imme-
diately observed under a stereomicroscope, cumulus-
oocyte complexes (COCs) were washed in buffered 
medium (Flushing medium, Cook Ltd., Ireland) and 
oocytes were inseminated within 4  h using either con-
ventional IVF (34%, 27/80 cycles) or ICSI (66%, 53/80 
cycles), according to semen quality. When performing 
ICSI, 2  h after OPU oocytes and cumulus cells (CCs) 
were separated from each COC by gently pipetting in a 
40-µl HEPES buffered medium containing 80 IU/ml hyal-
uronidase (Synvitro Hyadase, Origio Medicult, Denmark) 
[23]. Normal fertilization was confirmed when two pro-
nuclei (2PN) and the extrusion of the second polar body 
were observed within 16–18 h after insemination.

Annotation of embryo morphokinetics
A total of 575 embryos were included into our analysis, 
obtained either with conventional IVF (n = 216) or ICSI 
(n = 359). Embryos were cultured in the Geri plus® TLS 
(Genea Biomedx, Australia), that is equipped with an 
integrated embryo monitoring system to observe one 
zygote/microwell, as previously described [24]. The dish 
format allowed the observation of each embryo individu-
ally at 11 different focal planes, even if all embryos shared 
a common 80-µl medium drop. Up to day 3, embryos 
were cultured in pre-equilibrated Cleavage medium 
(Cook, Ireland) overlaid with mineral oil; then, a change 
of medium was performed, and the new medium (Blasto-
cyst medium, Cook) was kept until the blastocyst stage. 
Bright-field images were captured by Geri plus® system 
every 5  min from the time of fertilization until day 5, 
when embryo transfer (ET), cryopreservation or dis-
charge occurred.

Embryo morphological evaluation was first performed 
by one single senior embryologist on day 2 using the 
Integrated Morphology Cleavage Score (IMCS) [25], and 
then repeated on day 5 according to standardized criteria 
[1]. Notably, IMCS was based on the evidence of implan-
tation and clinical pregnancy after double ET on day 2, 
and was incorporated into a complex prediction model 
for IVF outcome, recently shown to predict live birth with 
a remarkably good precision [26]. However, prospec-
tive application of that model proved that it was highly 
effective as a means of embryo selection to reduce twin 
implantation rates (from 28 to 2%) for both SET and DET 
[27]. Furthermore, all videos collected by Geri plus® were 
analysed by the same senior embryologist, and based on 
ESHRE recommendations [4] the following morphoki-
netic parameters (times) were manually annotated on 
all generated embryos, although affected by unavoidable 
intra-operator variability: pronuclear appearance (tPNa), 
pronuclear fading (tPNf), completion of cleavage to two, 
three, four, and eight cells (t2, t3, t4, and t8, respectively), 
time intervals tPNf-tPNa, t2-tPNf, t3-t2, t4-t3, t4-t2, 
and t8-t4. Day 5 blastocyst formation was assessed at 
the same time interval (116 ± 2 h post insemination) for 
all embryos. Embryos reaching the expanded blastocyst 
stage on day 5 (score 3 according to [1] were included in 
the Blastocyst Group (BL Group, n = 210), whereas those 
arrested or progressed to a stage earlier than expanded 
blastocyst were included in the Not-expanded Blastocyst 
Group (nBL Group, n = 365), as previously described [28]. 
We decided to consider blastocyst expansion as the main 
criteria to identify BL or non-BL group, irrespectively of 
ICM and TE morphology, because it was recently con-
firmed that although embryologists may adopt the same 
grading scheme their agreement is limited, especially 
when the morphological quality is low [29–31].

Training dataset preparation
A total of 30 variables among those currently recorded 
during clinical routine were considered for each embryo 
and divided into three categories: (i) woman-related 
(n = 6) describing patients clinical characteristics: age, 
BMI, day 3 FSH, AMH, antral follicle count (AFC), years 
of infertility; (ii) COS-related (n = 10), describing the 
clinical characteristics and outcomes of ovarian stimu-
lation: total exogenous FSH, peak E2, OSI, number of 
retrieved oocytes, number of mature oocytes, matura-
tion rate, number of fertilized oocytes, fertilization rate, 
number of cleaved embryos, cleavage rate; (iii) embryo-
related (n = 14), describing embryo morphology and 
mophokinetics: insemination technique, IMCS score on 
day 2, tPNa, tPNf, t2, t3, t4, t8, tPNf-tPNa, t2-tPNf, t3-t2, 
t4-t3, t4-t2, t8-t4. Specifically, all the considered vari-
ables (n = 30) were evaluated for each embryo obtained 
by ICSI (n = 359), whereas for embryos obtained by 
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conventional insemination (n = 216), tPNa and tPNf-tPNa 
were not annotated, as in this case normal fertilization 
was checked only after cumulus cells removal. Overall, 
this dataset composed the Training cohort used for ML 
framework development.

Development of the EmbryoMLSelection framework
The generation process of the novel EmbryoMLSelec-
tion framework was composed of four modules: Features 
Selection, Rules Extraction, Rules Selection and Rules 
Evaluation (Supplementary Fig. 1), in order to easily ana-
lyze embryo data and build a model able to distinguish 
between two groups of embryos: one characterized by a 
high likelihood of reaching the expanded blastocyst stage 
on day 5 (referred to as the BL group) and the other with 
a low chance (referred to as the nBL group). The initial 
component of EmbryoMLSelection is Feature Selec-
tion, which involves identifying the most informative 
features for the task while eliminating noisy, non-infor-
mative, irrelevant, and redundant features. The result-
ing list of features is then inputted into the subsequent 
step, called Rule Extraction, focusing on exploring rule-
based models. Subsequently, a Rule Selection process 
is performed to eliminate unpredictable or redundant 
rules. In detail, each rule was evaluated in terms of the 
number of true and false positive/negative samples clas-
sified; these values were used to compute the Matthews 
Correlation Coefficient MCC, a measure of the quality 
of the binary classification prediction specifically for the 
imbalance dataset. MCC reflects how well the rules were 
able to distinguish between the class: specifically, MCC 
was used to identify those rules having a limited overlap 
in terms of both the features considered and the samples 
correctly classified, leading to an increase in the number 
of samples correctly classified. The MCC values must 
be interpreted as a correlation index (i.e. positive/nega-
tive values indicates direct/inverse relationship, while 0 
implies random correlation). The Rules Evaluation phase 
is then implemented to assess the model’s performance 
by measuring how accurately its predictions align with 
the observed data. A graphic formalism was adopted to 
visualize the functional dependencies among variables.

The machine learning methods devoted to the classi-
fication task are generally grouped into four overlapping 
categories: (i) the geometric models represent instances 
as points in a high-dimensional Euclidean space and 
exploit spatial concepts (e.g. distances, lines, planes) to 
make decisions. In this category, we have implemented 
two algorithms support vector machines (SVM) and 
k-nearest neighbors (kNN). (ii) The probabilistic models 
assume there is an underlying random process modeling 
the relationship between the data and the target variable 
(i.e. BL or nBL groups), and try to model it using prob-
ability distributions. Logistic regression estimates the 

probability of a binary outcome by fitting a logistic func-
tion to the linear combination of input features, while 
Naive Bayes is based on Bayes’ theorem with the naive 
assumption of feature independence. (iii) The rule-based 
models partition the instance space into instance space 
segments through a set of logical rules, using either a list 
or a tree-based structure. Decision trees are a popular 
rule-based model for classification and regression tasks; 
in this category, we have implemented the Random For-
est algorithm. Finally, (iv) ensemble methods are related 
to a set of techniques wherein a target function is learned 
by training multiple individual learners and then con-
solidating their predictions. Gradient boosting and Ada 
Boosting are the two methods implemented in this cate-
gory. The AUC and accuracy values reported in the paper 
are the highest values obtained from each of the five clas-
sification algorithms.

The analysis workflow was implemented using Python 
3 programming language [32]. detailed description of 
the modules and the methodology adopted is provided 
in the supplemental Material and Methods. Embryo-
MLSelection framework was registered in the Docker 
image, available at https://hub.docker.com/r/qbioturin/
embryo_ml_workflow. The web page contains the list of 
requirements and the command line to run the code. An 
example of how to run the workflow using the Embryos 
input data and the complete list of the parameters is pro-
vided in order to ensure both functional and computa-
tional reproducibility of the experiments.

Statistical analysis
Principal Component Analysis (PCA) was executed using 
the scikit-learn library in Python. The heatmap, illus-
trating R coefficients derived from Pearson correlation 
between feature pairs, was generated using the Python 
Data Analysis Library called pandas. The arrangement 
of rows and columns is determined by grouping features 
based on their types. Prior to PCA and correlation analy-
sis, feature values are normalized as z-scores.

Results
Correlation between the considered variables
Supplementary Table 1 summarizes the clinical char-
acteristics of the 80 patients included into the Training 
dataset and the outcome of their IVF cycles. Overall, 575 
embryos were obtained, of which 210 (36.5%) progressed 
to the expanded blastocyst stage on day 5 (BL group) 
whereas 365 (63.5%) did not (nBL Group) (Fig. 1A).

At first, all embryos were considered together for a 
preliminary analysis aimed at identifying a correlation 
cluster between the considered variables and embryo 
development where we applied the Principal Component 
Analysis (PCA) to generate a labelled scatter plot accord-
ing to the clustering category of the embryos (BL or nBL). 

https://hub.docker.com/r/qbioturin/embryo_ml_workflow
https://hub.docker.com/r/qbioturin/embryo_ml_workflow
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Although there was not a clear separation of the two 
embryo populations (Fig.  1B), different density curves 
could be noted after comparing the range of values of BL 
with those of nBL, as shown in Fig. 1C (see also Supple-
mentary Table 2).

The inter-variables correlation analysis revealed two 
major clusters, the first between woman-related and 
COS-related variables, the second within embryo-related 
variables, as depicted in the heat map (Fig.  2). Interest-
ingly, the insemination technique showed either weak or 
no correlation with the other variables (Fig. 2). In addi-
tion, a clear cluster was not detectable considering each 
set of variables to discriminate the BL and nBL embryo 
groups by scatter plots (Fig. 2), thus concluding that our 
preliminary analysis was not enough to identify predic-
tive variables of embryo development.

Selection of rules associated with blastocyst development
To pursue our aim to define a specific feature signature, 
the first phase of EmbryoMLSelection framework was 
applied to identify the most predictive variables. This pro-
cess exploits multiple selection algorithms (e.g. filter and 
embedded methods) to explore the ideal set composed 
by balanced cut-off between the number of features and 
the power of their association with embryo develop-
ment. The selection strategy was performed on the Train-
ing cohort using the 70% (n = 403) of the total number of 
embryos defined as training dataset. The identified set of 
features was tested on a classification task using strati-
fied 10-fold cross validation repeated 100 times against 

the test set composed of the remaining 30% (n = 172) of 
the embryos of the Training cohort. A total number of 12 
variables (OSI, Maturation rate, Fertilization rate, Cleav-
age rate, Age, Day 3 FSH, AFC, IMCS, tPNf, t4, t4-t3, 
t8-t4) composed a preliminary set providing the highest 
area under the curve (AUC = 0.74 obtained by the gradi-
ent boosting classification algorithm). In a second phase, 
these variables were managed to define the set of rules 
(combination of variables) able to discriminate embryos 
of BL and nBL groups. The Rules extraction module was 
then applied to generate 71 rules from the training set. 
To explore the association of the extracted rules within 
each other and with blastocyst development, the Rule 
Selection module was applied to implement the Mat-
thews Correlation Coefficient (MCC). MCC was used to 
remove the unpredictive or redundant rules, leading to a 
new set of 23 selected rules. Figure 3A is the correlation 
graph obtained from the visualization module, where the 
rules were represented as nodes whose size is correlated 
with the relevance of the primary outcome (blastocyst 
development), while the edge between two nodes repre-
sented a correlation value for those rules higher than 0.8 
(computed by Matthews Correlation Coefficient (MCC). 
It is interesting to note that 8 out of 23 rules were iso-
lated vertices (Fig. 3A, red nodes on the right) highlight-
ing their low (i.e. minor than 0.8) functional dependency 
from the others rules but, at the same time, their high rel-
evance with the primary outcome (the size of the node 
was generally large).

Fig. 1  (A) Pie chart showing the distribution of the 575 embryos: embryos progressed to the expanded blastocyst stage on day 5 (BL, blue) or not (nBL, 
orange). (B) Scatter plot obtained from a dimensionality reduction technique (principal component analysis) considering all 575 embryos and all vari-
ables. The color of the embryos identifies those grown to the expanded blastocyst stage on day 5 (BL, blue) or not (nBL, orange). (C) Split violin plots of 
the distribution of the z-score of the value of all features distinguishing embryos grown to the expanded blastocyst stage on day 5 (BL, blue) or not (nBL, 
orange). Each violin plot is divided in half allowing for a clear observation of differences in the distribution of values between the BL and nBL groups. The 
p-values expressed by a significance code are computed by a Kruskal-Wallis rank sum test
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We defined a feature-signature composed of 6 out of 
the 23 selected as the rule combination with the highest 
discrimination power. This evaluation was performed in 
terms of classification performance expressed as AUC 
value. Specifically, Fig.  3B shows the line plot reporting 
the AUC values (y-axis) computed by the seven classifi-
cation algorithms for the classification of the expansion 
or not of the blastocyst, considering a given number of 
features (x-axis). The maximum value of the AUC (0.842) 
was reached by the AdaBoosting classifier considering 6 
rules (yellow vertical ribbon); all coefficients computed 
for all the seven classifiers are reported in Supplementary 
Table 3. Figure 3C reported the 6 rules and their feature 
composition based on: one COS-related feature (OSI), 
two woman-related features (i.e. Age and AFC), and five 
embryo-related variables (i.e. tpnf, t4, t4-t3, t8-t4, imcs) 
(Fig. 3D).

Validation of the selected rules on an independent dataset
The performance of the 6 selected rules was tested by five 
classification algorithms on an independent validation 
cohort of 81 embryos obtained from other 10 patients 
with clinical characteristics comparable to the women 

included in the study (Supplementary Table 1). We con-
firmed that the rules composting the feature-signature 
showed a predictive performance with AUC = 0.842 
and accuracy of 0.81. For the sake of convenience, the 
EmbryoMLSelection framework was also applied in 
a setting in which the variables were not previously 
selected. Specifically, all variables were used together 
in order to obtain at first 131 extracted rules, showing 
a high functional dependency highlighted by the high 
number of arcs (Supplementary Fig. 2A). From a subset 
of 30 selected rules, 17 were finally derived based on the 
AUC in order to choose the best combination of rules 
with the highest discrimination power (Supplementary 
Fig.  2B). However, in the validation cohort these rules 
reached lower values in terms of both AUC (0.79) and 
accuracy (0.70) with respect to the previously identi-
fied feature signature. Finally, when considering only the 
embryo-related variables, 146 rules were extracted with 
high functional dependency (Supplementary Fig.  3A). 
A subset of 30 selected rules allowed to identify, in the 
validation cohort, a final number of 21 rules reaching 
an AUC value = 0.74 and an accuracy value = 0.68 (Sup-
plementary Fig.  3B). This performance confirmed that 

Fig. 2  Heatmap plot showing the Pearson correlation value among all variables (right panel of the figure). Scatter plots computed through a dimension-
ality reduction technique (principal component analysis) for each set of variables, independently (leftpanel)
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embryo-related variables alone are not enough to accu-
rately describe blastocyst development, and that it is 
necessary to consider the overall set of variables while 
designing the framework.

Discussion
Artificial Intelligence is one of the most promising, 
objective methodologies aimed at standardizing embryo 
assessment in human IVF. An intriguing application of 
AI within the IVF laboratory is providing new knowledge 
on cellular profiles regulating embryo in vitro growth 
and embryo competence [14]. In particular, the use of 
explainable methods, as well as the rules-based models, 
makes the classification problem (i.e., the association of 
a particular object to a class considering a subset of fea-
tures describing the object) understandable, transparent, 
and interpretable.

The introduction of TLT offers the possibility to obtain 
a vast bulk of data on the kinetic of human embryo 
growth, producing a much more detailed timeline of 
dynamic events as well as showing previously unrecog-
nizable phenomena [33].

Exploring the ability of all features, clinical, TLT and 
patient’s characteristics to distinguish BL versus nBL 
embryos, become clear that dimensionality reduction 
methods, as well as Principal Component Analysis, inef-
fective in discerning between the embryos.

In the present study, we describe the performance of 
the novel EmbryoMLSelection framework in identifying 
a set of rules associated to a timely embryo development 
to the expanded blastocyst stage on day 5, called fea-
ture-signature. The rationale behind a two-step process 
of features selection, rule extraction and rule selection 
from a large number of variables/embryo (n = 30) was 
the identification of a set of rules (from an initial num-
ber of 71 to the final 6) identifying an feature-signature 
composed of relevant features (n = 8), describing cleavage 
stage embryos able to timely (within day 5) progress to 
the expanded blastocyst stage. As lower implantation and 
clinical pregnancy rates were reported in case of trans-
fer of slow-growing blastocysts vs. fully expanded day 5 
blastocysts [34, 35], probably due both to a poor embryo 
competence and to the loss of embryonic-endometrial 
synchrony [36], we considered the fully expanded blas-
tocyst on day 5 as the optimal development stage, that 
confers the highest probability of embryo implantation. 
In fact, the number of days of blastocyst development 
represents the developmental potential of a blastocyst 
[37] and affects the outcome of transfer [38]. In addition, 
the developmental potential of Day 5, 6 and 7 blastocysts 
decreases gradually with the extension of culture time 
[39]. Therefore, the conventional practice in the labora-
tory is to select blastocysts for transfer, biopsy or cryo-
preservation, starting from expanded day 5 blastocysts. 

Fig. 3  (A) Correlation graph of the selected rules. Vertices represent the rules and arcs are reported only for a correlation value > 0.8 (computed by Mat-
thews Correlation Coefficient (MCC). (B) Line plot representing the ability of different combinations of classifiers to classify the expanded or not expanded 
blastocyst stage. Each dot corresponds to the AUC computed using a different number of rules in input. (C) Set of 6 rules of the feature-signature with (D) 
their composition in terms of variable category
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In our dataset, 36.5% progressed to the expanded blasto-
cyst stage on day 5 (BL group defined according to the 
score 3 provided by the Istanbul Consensus) whereas 
63.5% did not (nBL Group). This data should be dis-
cussed in relation to the overall blastocyst formation 
rate of 53.8% observed in the enrolled patients. In fact, 
according to the Vienna Consensus [40], we considered 
also blastocysts with expansion score of 2 in the KPI 
“blastocyst formation rate”, excluded from the BL group 
of our study. For this reason, we believe we can exclude 
any selection bias from the patients population ensur-
ing an adequately powered analysis during the frame-
work development. Embryo selection models developed 
using morphokinetic parameters were previously shown 
to predict blastocyst development [41, 42]. Furthermore, 
the application of machine-learning technology provided 
an algorithm able to predict clinical pregnancy and live 
birth rate by analysing embryo morphokinetics [43]. Gis-
card d’Estaing [18] used a machine-learning system in 
order to build up a score for blastocyst formation with a 
prediction power having AUC = 0.634. In another study, 
the prediction accuracy of embryo assessment performed 
by experienced embryologists with morphokinetic grad-
ing methods added to conventional static morphol-
ogy was shown to range between 60% and 70%, with 
AUC = 0.63–0.70 [44]. In a previous study, the efficacy 
of six in-house embryo-selection algorithms (ESAs) was 
investigated in a set of known implantation embryos [45]. 
Interestingly, although the primary endpoint considered 
and the nomenclature adopted were different, we both 
observed that tPNf, s2 (i.e. t4-t3) and cc3 (i.e. t8-t4) were 
associated to embryo developmental and reproductive 
competence. Since their results highlighted that ESAs 
are usually specific to the patient, treatment, and envi-
ronment, we agree that currently available algorithms 
should be carefully validated before consider clinical 
applicability and, more importantly, they risk to lose their 
diagnostic value when externally applied. Herein, we pro-
vide evidence that the novel EmbryoMLSelection frame-
work allowed to perform a more precise evaluation of 
embryo dynamic growth with a performance described 
by AUC = 0.84 and accuracy of 81%. Notably, the Rules 
Selection step ensured such an increased performance 
providing a concomitant reduction of the rules and vari-
ables used (n = 6 and 8, respectively). Importantly, the 
EmbryoMLSelection framework developed here was reg-
istered in the Docker image and therefore its application 
is globally accessible online. Of note, the rules associated 
with the ability of reaching the stage of expanded blas-
tocyst on day 5 include early embryo-related variables, 
such as embryo morphological score on day 2, and some 
cytokinesis times occurring in the first three days of 
development (tPNf, t4, t4-t3, t8-t4). So far, only one study 
coupled TLT annotation with morphological embryo 

assessment performed with the evidence-based score 
named IMCS [46]. According to our results, good quality 
embryos having static morphological score > 6.0 on day 
2 are more likely to reach the expanded blastocyst stage 
on day 5. In addition, the relevance of timings describ-
ing early embryo development is confirmed by previous 
studies reporting that a timely blastocyst development 
on day 5 can be predicted looking at the first three days 
of development [28, 47]. Moreover, morphokinetic data 
of cleavage stage embryos were found to be associated to 
both blastulation rate and blastocyst quality [48]. Indeed, 
embryos with quicker cleavage time from the 2-cells to 
the 8-cells stage have the highest potential to timely 
become blastocyst with good morphological score, and 
with the ability to expand and implant [49, 50]. In this 
context, the pivotal clinical significance of our framework 
would be to indicate on day 3 which embryos are more 
likely to develop into viable blastocysts, giving the poten-
tial advantage to select the most competent embryos on 
day 3 without the need to extend culture till day 5, thus 
saving time and resources.

Moreover, other clinical variables, such as age, AFC 
and OSI, were associated to the timely progression to the 
blastocysts stage.

Indeed, female age defined as advanced (AMA; >35 
year) was extensively associated with a decline in oocyte 
yield, fertilization, and overall oocyte/embryo develop-
mental competence, mainly due to an increased incidence 
of aneuploidies and a decreased mitochondrial activity 
[51, 52]. Studies reporting embryo morphokinetics from 
the fertilization to the pre-implantation period in women 
of AMA remain limited; in our dataset, 44 (55%) of cycles 
were performed in patients with AMA and a total of 303 
(53%) embryos were included in our analysis suggesting 
a link between morphokinetic pattern and maternal age. 
Maternal age seems to have a relevant impact on the reg-
ulation of cell polarity during compaction, as well as on 
blastocoel cavity expansion, suggesting that AMA may 
affect embryo competence irrespective of the well-known 
consequences of oocyte meiotic errors [53]. On the other 
hand, AFC and OSI are markers of ovarian reserve and 
responsiveness to COS, and are associated not only with 
female age, but also with circulating AMH levels, oocyte 
yield and, ultimately, clinical pregnancy [54, 55].

Interestingly enough, the insemination technique (con-
ventional IVF or ICSI) was not included as relevant vari-
able in the selected rules, confirming previous evidence 
showing only minor morphokinetic differences between 
the two procedures [56].

Importantly, the rules proposed in this study are pre-
sented as a signature rather than a machine learning 
model. Despite the AdaBoosting algorithm had the high-
est AUC value in discriminating between BL and nBL and 
provided a model comprising rule-to-weight associations 
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which influence each rule’s contribution to the final pre-
diction, our focus was primarily to identify the rules 
rather than their weight.

The present study has the following limitations: (i) 
only couples undergoing single blastocyst transfer were 
considered in this study; (ii) the overall number of con-
sidered embryos was limited (n = 575) but it constituted 
the entire time-lapse database available in our centre; 
(ii) embryo developmental timings were manually anno-
tated, with unavoidable intra-operator variability [57]; 
(iv) only blastocyst expansion was considered irrespec-
tively of ICM and TE morphology, but a timely blasto-
cyst formation has a limited association coefficient with 
embryo ploidy and implantation chance [58]. As a conse-
quence, we recognise that our analysis was performed on 
a restricted patient population with a limited sample size, 
thus making the current findings less generalizable in dif-
ferent clinical and laboratory settings.

Conclusions
To summarize, we identified specific rules composed 
of a combination of demographic, morphological and 
morphokinetc variables, that can represent a feature 
signature significantly associated with the likelihood to 
progress to the expanded blastocyst stage on day 5. We 
also identified for the first time clear and clinically rele-
vant cut-offs for each considered variable, providing new 
insights on the critical range of values affecting embryo 
developmental competence.

In our opinion, it is likely that AI will be soon widely 
used in IVF labs, as it may be of high value in Lab autom-
atization [59, 60]. Further studies are needed to prospec-
tively validate our framework in a clinical setting, aimed 
at assessing whether it may provide a more objective, 
accurate, rapid and standardized tool for the assessment 
of embryo development.
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