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Abstract 

Background Epithelial ovarian carcinoma (EOC) is a prevalent gynaecological malignancy. The prognosis of patients 
with EOC is related to acetylation modifications and immune responses in the tumour microenvironment (TME). 
However, the relationships between acetylation-related genes, patient prognosis, and the tumour immune microenvi-
ronment (TIME) are not yet understood. Our research aims to investigate the link between acetylation and the tumour 
microenvironment, with the goal of identifying new biomarkers for estimating survival of patients with EOC.

Methods Using data downloaded from the tumour genome atlas (TCGA), genotypic tissue expression (GTEx), 
and gene expression master table (GEO), we comprehensively evaluated acetylation-related genes in 375 ovarian can-
cer specimens and identified molecular subtypes using unsupervised clustering. The prognosis, TIME, stem cell index 
and functional concentration analysis were compared among the three groups. A risk model based on differential 
expression of acetylation-related genes was established through minimum absolute contraction and selection opera-
tor (LASSO) regression analysis, and the predictive validity of this feature was validated using GEO data sets. A nomo-
gram is used to predict a patient’s likelihood of survival. In addition, different EOC risk groups were evaluated for tim-
ing, tumour immune dysfunction and exclusion (TIDE) score, stemness index, somatic mutation, and drug sensitivity.

Results We used the mRNA levels of the differentially expressed genes related to acetylation to classify them 
into three distinct clusters. Patients with increased immune cell infiltration and lower stemness scores in cluster 2 (C2) 
exhibited poorer prognosis. Immunity and tumourigenesis-related pathways were highly abundant in cluster 3 (C3). 
We developed a prognostic model for ten differentially expressed acetylation-related genes. Kaplan–Meier analysis 
demonstrated significantly worse overall survival (OS) in high-risk patients. Furthermore, the TIME, tumour immune 
dysfunction and exclusion (TIDE) score, stemness index, tumour mutation burden (TMB), immunotherapy response, 
and drug sensitivity all showed significant correlations with the risk scores.

Conclusions Our study demonstrated a complex regulatory mechanism of acetylation in EOC. The assessment 
of acetylation patterns could provide new therapeutic strategies for EOC immunotherapy to improve the prognosis 
of patients.
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Background
Among gynaecological cancers, epithelial ovarian can-
cer (EOC) is the second most common cause of mor-
tality [1, 2]. The 2020 edition of U.S. Cancer Statistics 
reported that there are more than 239,000 new annual 
cases of EOC (constituting 3.6% of all cancer cases) [3], 
leading to approximately 185,000 deaths (represent-
ing 4.3% of all cancer deaths) [1] worldwide. Because of 
ineffective screening methods and the absence of early 
recognizable clinical symptoms, the majority of patients 
with EOC are diagnosed at an early stage, with a 5-year 
survival rate of 29%. While platinum-based therapy 
serves as the initial treatment for EOC, approximately 
70% of patients will relapse within 3 years [4].

Currently, molecular indicators such as CA125 [5], HE4 
[6], and BRCA1 are used for clinical monitoring. How-
ever, these biomarkers are not presently utilized as thera-
peutic targets. Moreover, single-gene predictive models 
often exhibit low specificity, whereas multigene-based 
prediction models demonstrate improved accuracy. 
With increasing availability of next-generation sequenc-
ing (NGS) data, multigene-based prediction models are 
becoming more specific than single-gene prediction 
models, offering enhanced predictive accuracy. Recently, 
several studies have identified the potential of utilizing 
multi-target combination therapy to enhance the prog-
nosis of patients with tumours. Therefore, it remains cru-
cial to explore new potential anti-tumour targets.

Many epigenetic studies have shown that the devel-
opment and prognosis of EOC are influenced by the 
dynamic regulation of various oncogenes and tumour 
suppressor genes [7]. Epigenetic modification refers to 
the heritable phenotype that influences gene expression 
without modifying the DNA sequence. This regulation of 
tumour-related genes makes them possible therapeutic 
targets [8].

Acetylation modification is an invertible homeostasis 
process regulated by histone acetyltransferases (HATs) 
and histone deacetylases (HDACs) [9]; HATs facilitate 
the transfer of acetyl groups onto the N-terminal lysine 
residues, thereby counteracting the positive charge 
on these residues and unfolding the DNA conforma-
tion. This process loosens the structure of nucleosomes 
and activates the transcription of specific genes, mak-
ing transcription factors more easily bind to promoter 
regions, while HDACs act in the opposite direction[10]. 
Abnormal expression of HATs and HDACs is related 
to malignant progression of tumours [11]. It has been 

identified as a key target for tumourigenesis and rep-
resents a novel class of anti-tumour drugs with wide-
ranging applications [12]. In addition, a regulatory 
imbalance between HATs and HDACs is associated 
with EOC pathogenesis [13, 14]. Many studies have 
found that histone deacetylase inhibitors (HDACis), 
such as trichostatin A [15] and belinoist [16], act as 
important epigenetic regulatory drugs in cell prolifera-
tion, differentiation, cell cycle, and immune response, 
demonstrating significant anticancer potential. At 
present, there are three HDACis available for treating 
EOC [17]. Acetylation homeostasis is closely associ-
ated with the pathogenesis of EOC. However, there is 
a lack of systematic and holistic research investigating 
the impact of acetylation-related genes on EOC prog-
nosis. Therefore, it is crucial to develop highly selective 
targeted drugs for EOC treatment.

Immunotherapy targeting programmed cell death 
protein 1(PD-1) and its ligand programmed cell death 
protein 1(PD-L1) are expected to improve the long-
term survival prospects of patients with EOC in the 
future [18]. Many immune checkpoint inhibitors (ICI) 
are applied to treat tumours. However, owing to the 
specificity of immunotherapy drugs, only a minority 
of patients experience positive outcomes from these 
treatments. Furthermore, some tumours, such as ovar-
ian, breast, and pancreatic cancers, appear to be inher-
ently resistant to ICI drugs [19]. Approximately 20% 
of patients exhibit an objective response to immune 
checkpoint blockade (ICB). Recently, targeted therapy 
combined with immunotherapy has emerged as a cru-
cial treatment for many advanced cancers owing to its 
advantages such as high targeting and low toxicity [20].

In our study, a new prognostic marker for acetyla-
tion-related differential gene regulation was established 
using samples from TCGA and GTEx databases. By 
combining expression profiles with prognostic infor-
mation, acetylation-related genes associated with the 
prognosis of EOC were identified. Patients with EOC 
were divided into two groups, those with high risk 
and those with low risk. Genetic characteristics were 
determined through the application of LASSO Cox 
regression analysis. To predict the outcome of EOC, a 
prognostic model based on risk score was constructed. 
Using the CiberSort, Estimate, and ssGSEA algorithms, 
we assessed the differences in the immune and survival 
traits among distinct risk subgroups in tumour immune 
evasion. The study also examined the relationships 
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between drug sensitivity, immune microenvironment, 
and EOC prognosis. Our study provides new prognos-
tic markers for patients with EOC to lead to more effec-
tive treatment.

Methods
Data sources
Relevant collections of reactome genes were searched in the 
Human Genome Database (GeneCards, https:// www. genec 
ards. org/) using the search term “ACETYLATION”. In total, 
4056 acetylation-related genes (ARGs) were downloaded 
from the GeneCards database [21]. Transcriptome sequenc-
ing data and relevant clinical data for 379 ovarian cancer 
patients were acquired from the Cancer Genome Atlas 
database (https:// portal. gdc. cancer. gov/). In the absence of 
data from the normal group, we used the GTEx database to 
procure sequence data from the ovarian tissues of 88 unaf-
fected female patients (accessed from https:// xenab rowser. 
net). Normalisation of expression matrices for the inde-
pendent datasets were carried out using the “SVA” pack-
age. Transcriptional data and associated clinical data for the 
immunotherapy cohort IMvigor210 were acquired from the 
R package “IMvigor210 CoreBiologies” [22, 23]. The Valida-
tion of immunohistochemical results for genes with prog-
nostic value was performed by using the Human Protein 
Atlas (http:// www. prote inatl as. org/).

Screening of DEGs and cluster analysis
The R package “LIMMA” facilitated the screening of 
3559 differentially  expressed  genes (DEGs), defined by 
|log2 fold change (FC)|> 1.5 and false discovery rate 
(FDR) < 0.01.Prognostic significance of DEGs was evalu-
ated through univariate cox regression analysis. Unsu-
pervised consensus clustering was performed using the R 
package “ConsensusClusterPlus”.

Enrichment analysis
GSEA software (version 4.2.3) was used to study the dif-
ferences in activated signalling pathways, utilizing hall-
mark gene sets and c2kegg gene sets. The annotated gene 
sets were extracted from the Molecular Signature Data-
base (https:// www. gsea- msigdb. org/ gsea). The enriched 
functions and pathways were compared among the three 
clusters, with the screening criteria set at (NES)|> 1, 
p < 0.05, and FDR < 0.25. A comprehensive workflow dia-
gram is shown in Supplementary Fig. 1.

Immune pattern analysis
The single sample Genomic Enrichment Analysis 
(ssGSEA) software package “Genomic Variation Analy-
sis (GSVA)” was used to calculate the relative enrichment 
of different immune cell types. The genes that serve as 
markers for various immune cells and their respective 

roles are described in Table  S1 [24, 25]. Stromal and 
immune cells in the tumour tissue were estimated using 
expression data (ESTIMATE) to compute the tumour 
stroma score, immune score, and tumour purity. Cell 
type identification by estimating relative subsets of RNA 
transcripts (CIBERSORT) was employed to investigate 
immunological features. The immune characteristics 
among clusters 1 (C1), C2, and C3 were analysed by using 
the “IOBR” package [26]. The CIBERSORT source file 
(https:// ciber sort. stanf ord. edu/) was downloaded and 
processed using the R software. The full gene expression 
matrices from GTEx and TCGA datasets were used to 
estimate the relative proportions of the 22 immune cells 
in two distinct risk groups. The R package “ESTIMATE” 
was performed to predict the immune scores and tumour 
purity of the sample.

Construction and validation of acetylation‑related gene 
signatures
In the TCGA cohort, gene expression data of each 
patient with corresponding overall survival time and 
survival state information were combined. A univari-
ate cox regression model was used to identify the prog-
nostic genes, and genes with p < 0.1 were considered 
as prognostic markers through the LASSO cox regres-
sion model provided by the “glmnet” R package. The 
risk score for genetic traits was calculated using the 
formula:

The patients were clustered into high-risk and low-risk 
groups according to the median risk score, excluding five 
patients without corresponding survival information. We 
verified the accuracy of the model by comparing the like-
lihood of survival in two different risk groups through 
Kaplan–Meier analysis. Receiver operating characteris-
tic (ROC) curves were designed using the “survival” and 
“Time ROC” R software packages to assess the sensitivity 
and specificity of risk scores.

Independent prognostic analysis
Univariate and multivariate cox regression models, 
implemented through the “survival” R software pack-
age, were used to estimate the independent prognostic 
value of risk scores. Collinearity analysis was performed 
using an interactive gene expression profiling analysis 
(http:// gepia. cancer- pku. cn). The Nomogram generated 
utilizing the “survival” and “rms” packages illustrated the 
results of the predictive model, and calibration curves 
were drawn to determine the agreement between antici-
pated and observed prediction outcomes.

Risk Score = n
i Coenfficient (mRNAi)× Expression (mRNAi)

https://www.genecards.org/
https://www.genecards.org/
https://portal.gdc.cancer.gov/
https://xenabrowser.net
https://xenabrowser.net
http://www.proteinatlas.org/
https://www.gsea-msigdb.org/gsea
https://cibersort.stanford.edu/
http://gepia.cancer-pku.cn
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Stemness index analysis
The RNA stemness index (mRNAsi) was computed using 
a one-class logistic regression machine-learning (OCLR) 
algorithm. The epigenetic regulatory mRNA stemness 
index (EREG mRNAsi), developed by Malta et  al. [27], 
was employed, and Spearman’s correlation (RNA expres-
sion data) was used for statistical analysis. The stemness 
index was mapped to a range based on the TCGA data-
base by subtracting minimum values and separating the 
results by maximum value. RNA-seq data for pluripotent 
stem cell samples were obtained from the Progenitor Cell 
Biology Consortium (PCBC) database [28].

Immunotherapy response evaluation
As multiple immune checkpoint inhibitors can enhance 
anti-tumour immune activity, we employed the TIDE 
(http:// tide. dfci. harva rd. edu/) algorithm for assessing the 
potential clinical efficacy of immunotherapies [29, 30]. 
The IMvigor210 was used as an external validation set to 
validate the effects of immunotherapy and the reliability 
of predictive outcomes [31].

Analysis of drug sensitivity
We utilized the R software package “oncopredict” for 
assessing chemotherapeutic responses, determining the 
half-maximal inhibitory concentration  (IC50) for each 
patient by using the Cancer Drug Sensitivity Genomics 
website (GDSC, https:// www. cance rrxge ne. org/) [32–34].

Mutation analysis
We extracted mutation profiles of EOC samples from the 
TCGA database. The “mafTools” software package in the 
MAF format aided in visualising the mutation frequency 
within the high- and low-risk groups. Subsequently, we 
examined the relationship between the risk score and 
TMB. We also performed a KM survival analysis to com-
pare the variations in OS among various groups based on 
TMB and risk scores [29].

Statistical analysis
The Wilcoxon test was used to compare gene expres-
sion levels between the two groups. The Chi-square test 
examined the correlations between acetylation-related 
DEGs (ARDEGs) and clinical parameters as well as the 

relationship between immunotherapy efficacy and risk 
scores. Additionally, KM survival analysis was used to 
assess the OS between different risk groups. Calibra-
tion, C-index, and ROC curves were employed to assess 
the predictive reliability of the risk and nomogram mod-
els. Univariate and multivariate cox regression models 
allowed for identification of ARDEGs and assessment 
of the independent prognostic value of the risk model. 
All statistical analyses were conducted using R software 
(version 4.0.2). The statistical significance was estab-
lished at a level of *p < 0.05. The significance levels were 
defined as **p < 0.001; **p < 0.01.

Results
Differential expression analysis of ARGs in EOC
We acquired 844 ARDEGs were acquired from the inter-
section of 4056 ARGs and 3559 DEGs. Among 3559 
DEGs, 1722 genes exhibited higher expression levels, 
while the other 1835 were downregulated (Fig.  1A, B). 
The prognostic significance of ARDEGs was analysed 
using a univariate Cox regression model. We identified 
65 genes that were significantly associated with survival 
prognosis (p < 0.1) (Fig. 1C).

Unsupervised clustering was performed by determin-
ing k = 3 as the optimal value. Cophenetic correlation coef-
ficients were subsequently calculated, categorising patients 
with EOC into three clusters: C1, C2, and C3 (Fig. 1D). To 
determine the latent biological behavioural differences 
underlying the different acetylation patterns, we used GSEA 
analysis to reveal pathways and functions enriched for these 
genes. C1 and C2 were abundant in pathways associated 
with immunity, including B cell receptors, T cell recep-
tors, natural killer cell-mediated cytotoxicity, and apop-
tosis. Conversely, C3 exhibited an increase in pathways 
associated with tumourigenesis and cell proliferation, such 
as hedgehog signalling and DNA replication. The signifi-
cantly enriched pathways in Clusters 1 and 2 included adap-
tive immune response, NF-κB signalling pathway, and P53 
signalling pathway (Fig. 1F). Survival analysis indicated that 
patients in C1 had a more favourable prognosis than those 
in the other two clusters (log-rank P = 0.000000021, Fig. 1E), 
suggesting that the clusters impact the progression of EOC 
by affecting immune infiltration and stemness maintenance.

Fig. 1 Differential expression analysis of ARGs in EOC. A Volcano map of DEGs. B The number of acetylation-related and differentially expressed 
genes is shown in a Venn diagram. C Prognostic values of 65 signatures are shown as forest plots of HR by univariate cox regression analysis. D 
Unsupervised clustering of 844 ARDEGs with prognostic value and consensus matrix when k = 3. E Overall survival rates among the three clusters 
are depicted by Kaplan–Meier analysis. F Bio-enriched pathway status in the three clusters is depicted by GSEA. The pathways that have been 
activated are denoted in red, while the pathways that have been inhibited are depicted in blue. (The notation “ns” signifies no significance; *p < 0.05; 
**p < 0.01; *** p < 0.001; ****p < 0.0001)

(See figure on next page.)

http://tide.dfci.harvard.edu/
https://www.cancerrxgene.org/
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Fig. 1 (See legend on previous page.)
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Features of acetylation in immunotherapy 
and chemotherapy
The ovarian TME landscape was systematically con-
structed and evaluated using the ssGSEA algorithm, 
which relied on 29 immune-related cell markers for 

analysis [35] (Fig. 2A, Supplemental Table 1). C1 and C2 
exhibited notably elevated immune, stromal, and ESTI-
MATE scores, whereas the tumour purity of C3 was strik-
ingly higher than that of the other clusters (Fig. 2B). C2 
exhibited an immunosuppressive subtype characterised 

Fig. 2 Features of acetylation in immunotherapy and chemotherapy. A The relative levels of immune cell infiltration in the three clusters using 
ssGSEA. B The ESTIMATE algorithm was employed to compare tumour immunity scores. C Immune cell components of different subtypes were 
determined using the CIBERSORT algorithm. D The levels of gene expression related to the immunotherapy target. E Differences in TIDE scores 
and microsatellite instability (MSI) scores
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by an abundance of quiescent memory CD4 + T cells 
and M2 macrophages, along with elevated immune and 
stromal scores. However, C1 exhibited increased levels 
of anti-tumour components in TME, including CD8 + T 
cells, activated memory CD4 + T cells, T follicular helper 
cells, M1 macrophages, and activated dendritic cells. C3 
exhibited moderate TME infiltrations such as M0 mac-
rophages and stromal scores (Fig. 2C). TAMs and Tregs 
are prominent immunosuppressive cells in TME, known 
to contribute to tumorigenesis and immune evasion [36, 
37]. Given that C2 and C3 were significantly enriched in 
TAMs and Tregs, we hypothesised that these two immu-
nosuppressive cell types may significantly contribute to 
the poor clinical prognosis observed in patients exhibit-
ing this acetylation model. Moreover, immune check-
points were increased in C2 compared to C1 and C3, 
including PDCD1, CD274, PDCD1LG2, CTLA4, CD28, 
CD80, CD86, HAVCR2, LGALS9, LAG3, CIITA, CD47, 
SIRPA, TIGIT, CD96, and CD226 (Fig. 2D). The potential 

clinical efficacy of immunotherapy was assessed using the 
TIDE algorithm. Patients in C2 and C3 had higher TIDE 
scores and responded better to ICB immunotherapy 
(Fig. 2E). In conformity with our earlier findings, patients 
in C2 and C3 did not benefit from immunotherapy, vali-
dating the higher overall benefit in C1. These results 
reveal that ARDEGs may serve as potential predictors of 
the response to immunotherapy.

Stemness analysis indicated that the stemness level 
was higher in C1 than in C2 and C3. We also investi-
gated another stemness index, the EREG mRNAsi score, 
which indicated the same result (Fig. 3A). The TMB is an 
essential indicator used to assess clinical immunother-
apy. The TMB was significantly increased in C1 (Fig. 3B). 
We examined the correlation between the pattern of 
acetylation and the response to chemotherapy. Several 
commonly used chemotherapeutic drugs, including dox-
orubicin, mitomycin C, and gemcitabine [38], and adju-
vant treatments after surgery for EOC, such as cisplatin, 

Fig. 3 Development of prognostic gene signature. A Different stemness scores for C1, C2, and C3. B TMB differences between the three clusters. C 
Differences in the  IC50 values of chemotherapeutic agents for the three clusters
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methotrexate, and vinblastine [39], have been confirmed. 
We found that C3 was related to a high  IC50 for cisplatin, 
dasatinib, irinotecan, gemcitabine, epirubicin, topotecan, 
docetaxel, and dabrafenib, indicating higher sensitivity to 
chemotherapy, but erlotinib exhibited the opposite trend 
(Fig.  3C). These results indicate a distinctive role of the 
acetylation pattern in predicting the efficacy of immu-
notherapy and chemotherapy, which could have direct 
application in clinical treatment.

Development of prognostic gene signature
The LASSO Cox regression model was applied to estab-
lish the risk features (Fig. 4A). Genes contributing less to 
the model were removed based on the AIC criteria. As 
a result, 10 genes were obtained based on the optimum 
λ value: GALNT6A, FOXO1, ACSM3, DNAJA1, KYAT1, 
JUP, PRDX5, TPMT, DYRK1B, and SERPINB9 (Fig. 4B). 
Using the coefficient for each gene, the risk score was cal-
culated using the following equation:

According to the median risk score, patients with EOC 
were separated into high-risk and low-risk groups. The 
survival analysis showed a notably lower OS rate in the 
high-risk group (p < 0.001; Fig.  4C). Similarly, patients 
with high risk exhibited lower survival rates and shorter 
survival times than those with low risk (Fig. 4E). Subse-
quently, ROC curves were performed (Fig. 4D) to deter-
mine the prophetic accuracy of the risk score. The areas 
under the curve (AUC) values for the signatures at 1, 5, 
and 10 years were 0.794, 0.732, and 0.847, respectively.

Independent prognostic role of model and model‑based 
construction of nomograms
Clinical features such as age and tumour stage were 
included in regression models to assess the independent 
association of the risk scores with OS. Univariate analy-
ses suggested that age and risk score were related to prog-
nosis. In the multivariate cox regression model, these two 
factors emerged as independent indictors of prognosis 
(HR for risk score, 2.245; 95% CI, 1.843–2.733; p < 0.001; 
Fig. 5A). Genetic correlation is illustrated in Supplemen-
tary Fig.  3, showing that all genes were independent of 
each other, exhibiting low covariance and thus being eli-
gible for inclusion in the model.

Based on the above findings, nomogram features and 
clinical characteristics (age, stage, tumour grade, and 

Risk score = (−0.5693) ∗ GALNT6A(exp)+ (0.8221) ∗ FOXO1(exp)+ (−0.8049) ∗ ACSM3(exp)

+ (−2.3505) ∗ DNAJA1(exp)+ (1.8196) ∗ KYAT1(exp)+ (1.5032) ∗ JUP(exp)

+ (−2.2938) ∗ PRDX5(exp)+ (−0.9027) ∗ TPMT (exp)+ (1.1327) ∗ DYRK1B(exp)

+ (−1.142) ∗ SERPINB9(exp).

risk score) were established to forecast survival rates 
at 1, 5, and 10 years (Fig. 5B). Calibration plots of this 
model performed satisfactorily, with C-indices at 1, 5, 
and 10 years were 0.794, 0.732, and 0.847, respectively, 
demonstrating superior predictive value. AUC for the 
nomogram model, age, stage, and grade were 0.838, 
0.693, 0.549, and 0.636, respectively. Comparison of 
nomograms, risk scores, and clinical parameters indi-
cated that the nomogram and risk scores were more 
effective in forecasting the long-term prognosis of 
patients with EOC (Fig. 5C).

Patterns of immune cell infiltration in patients with EOC
We explored differences in the infiltrations of 21 
immune cells between patients with high and low risk 
using the CIBERSORT algorithm. Multiple types of 
immune cells, including follicular helper T cells, acti-
vated dendritic cells, M1 macrophages, and gamma-
delta T cells, exhibited remarkably higher infiltration 

densities in the low-risk group (Fig. 6A). This indicates 
heightened sensitivity to immunotherapy in the low-risk 
group, whereas the high-risk group may exhibit reduced 
sensitivity owing to M2 macrophage-mediated immu-
nosuppressive effects. The identified risk signature cor-
related with immune cell infiltration, which is essential 
for predicting immunotherapy responses. We explored 
its relation to anti-PD-L1 immunotherapy response, 
revealing a lower survival rate in the high-risk group, 
indicating unsuitability for immunotherapy (Fig.  6B). 
In the IMvigor210 cohort, patients classified as having 
low risk demonstrated notable therapeutic outcomes 
and favourable clinical responses to immunotherapy 
(Fig. 6C, D). These results propose that risk scores could 
serve as indicators of immunotherapy response. Never-
theless, there was no obvious difference in survival rate 
between the two groups, which may be due to an insuf-
ficient sample size (Fig.  6E). We further examined the 
variation in 24 chemotherapeutic and targeted drugs, 
indicating a striking difference in estimated  IC50 values 
between the high-risk and low-risk groups. The high-
risk group exhibited lower  IC50 values for paclitaxel, 
oxaliplatin, epirubicin, and dasatinib (Fig.  6F), which 
implied a higher sensitivity to chemotherapy. These 
results may guide the selection of immunotherapy and 
chemotherapy for patients with EOC.
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Fig. 4 Independent prognostic role of model and model-based construction of nomograms. A Prognostic signature construction using LASSO cox 
regression analysis in a TCGA dataset. The wavelength is expressed in horizontal coordinates, and the coefficient is expressed in vertical coordinates. 
B Multivariate cox regression analysis of the ARDEGs. C, D, E Differential outcomes in risk score, survival time, and survival state for the training, 
testing, and entire set. Kaplan–Meier analysis ©. ROC curves of the risk signature. The AUC for 1, 5, and 10 years was obtained, which indicated 
a better discrimination ability
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Mutational characterization and risk groups for ARDEGs
Gene mutations are major contributors to tumourigen-
esis and tumour progression. We conducted an analysis 
to compare the distribution of somatic mutations in the 
TCGA-OV cohort between high- and low-risk groups 
by using the maftools R package. Evaluating the fre-
quency of tumour mutations, we computed the TMB 
scores for patients. Based on the established model, 
the proportions of somatic mutations in the high-risk 
group were TP53 > TTN > CSMD3 > DNAH10 > FLG > 
MUC16 (CA125) > NF1 > RYR2 > SI > USH2A (Fig.  7A), 
whereas those in the low-risk group were TP53 > TTN 
> CSMD3 > FAT3 > MUC16 (CA125) > RYR2 > USH2A 
> FLG2 > MYH4 > BRCA1 (Fig.  7B). We observed that 
TMB, a crucial metric that is used in current clinical 
practice for evaluating immunotherapy, was remarkably 

higher in the low-risk group compared to that in the 
high-risk group. Furthermore, TMB was found to be 
correlated with the survival of patients (Fig. 7C, D).

The combination of TMB and risk scores was a robust 
predictor of clinical outcomes in patients with EOC 
(Fig. 7D). Patients with a high TMB and low risk scores 
exhibited more favourable survival rates, whereas those 
with a low TMB and high risk scores demonstrated 
worse survival rates. These results suggest that risk 
scores and TMB are useful in the prediction of progno-
sis for EOC patients.

Validation of prognostic genes using clinical tissue 
samples
We examined the protein expression of 10 genes 
in normal and tumour tissues and presented an 

Fig. 5 Patterns of immune cell infiltration in patients with EOC. A Prognostic values of ten signatures shown as forest diagrams of hazard 
ratios by univariate and multivariate cox regression analyses of EOC. B Predicting the survival outcomes of patients at 1, 5, and 10 years based 
on nomograms of age, stage, grade, and risk scores. Adding these four points to the total points could predict the survival probability. C Calibration 
curves of the nomograms drawn based on the agreement between 1-, 5-, and 10 years of predictions and observations. ROC curves were used 
to forecast the survival prognosis of patients at 1-, 5- and 10 years
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Fig. 6 Mutational characterization and risk groups for ARDEGs. A Enrichment of TME-infiltrating cells in two risk groups. B Differential outcomes 
of TIDE scores and MSI scores. C Differences in response to the four immunotherapies in the IMvigor 210 cohort (using the Kruskal–Wallis H test). 
D KM survival indicated that the two distinct risk groups were notably related to OS. E Different scores of tumour stemness index. F Sensitivity 
to differential chemotherapeutic drugs
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immunohistochemical graph from the HPA database 
shown in Fig. 8. Compared with normal tissues, six pro-
teins (GALNT6A, FOXO1, ACSM3, DNAJA1, PRDX5, 
and SERPINB9) were notably overexpressed in tumour 
tissues. Immunohistochemical images of the remaining 
four genes are shown in Supplementary Fig.  2. The ele-
vated expression of these genes was related to poor prog-
nosis, which is compatible with our results.

Discussion
Epithelial ovarian carcinoma has the highest mortality 
rate among gynaecological malignancies [40]. An effec-
tive and sensitive diagnosis remains challenging in the 
early stages, and chemotherapy resistance, along with 
metastasis, contributes to poor therapeutic efficacy and 
prognosis in advanced stages [41]. Therefore, a rapid and 
accurate early diagnosis, coupled with the implementa-
tion of rational drug therapy strategies, is crucial for the 
treatment of EOC. Epigenetics is essential for tumouri-
genesis and progression, with numerous genes associated 
with epigenetic modifications frequently altered in cancer. 

These genes may act as driver genes in oncogenic process 
[42]. Currently, there is increasing interest in investigating 
the interplay between acetylation and its effects on tumour 
development, metastasis, and progression [43], including 
in EOC [44]. Therefore, targeting the genes involved in 
acetylation is a promising strategy for future treatment.

Over the past decade, ICB immunotherapies target-
ing PD-1 and PD-L1 have rapidly evolved for use with 
EOC patients. Clinical trials on Olaparib, Rucaparib, and 
Niraparib [45] have yielded encouraging results. Immu-
notherapy is emerging as a prominent and novel treat-
ment option for patients with high-grade metastatic 
disease. Owing to the molecular heterogeneity of EOC, 
only approximately 20% of patients exhibited a positive 
response to ICB therapy. Therefore, identifying genomi-
cally characterised biomarkers is imperative for accu-
rate prediction and selection of patients likely to achieve 
favourable outcomes with immunotherapy. Similarly, 
certain biomarkers can help stratify patients and pre-
dict their responses to chemotherapy. For instance, the 
presence of either BRCA gene mutations or homologous 

Fig. 7 Validation of Prognostic Genes Using Clinical Tissue Samples. A The differential distribution of tumour somatic mutations is shown. Each 
column represents one patient. The top bar chart shows the TMB. The right figures and bar chart show the mutation rates and the proportions 
of change, respectively, for each gene. B Differences in TMB scores. C Survival analyses by KM survival for two distinct risk groups. D Survival analysis 
of four groups based on tumour mutation load and risk score
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recombination deficiency (HRD) is a widely used bio-
marker for poly (ADP-ribose) polymerase (PARP) inhibi-
tors, with BRCA gene mutations being the preferred 
sensitive biomarkers for PARP inhibitor therapy [46]. 
Consequently, studies focused on identification of effec-
tive biomarkers of chemotherapy and immunotherapy 
are urgently needed.

Though previous studies have explored the crucial 
role of acetylation in EOC, most focused on a restricted 
number of acetylation-associated proteins. The com-
plete function of acetylation in EOC and the interaction 
between acetylation and TME cell infiltration have not 
yet been elucidated. Therefore, there is a need for more 
effective immunotherapy, chemotherapy, and treatments 
targeting acetylation.

In this study, we explored the differences in the acti-
vation pathways of differentially expressed acetylation-
related genes associated with prognosis. The genes were 
categorised into three acetylation patterns, termed as 

acetylation C1, C2, and C3. Ten genetic markers were con-
structed using Lasso-Cox regression modelling and were 
demonstrated to be independent risk factors for EOC. 
Based on the risk scores generated by the model, patients 
could be separated into two subgroups: high- and low-
risk. The OS of patients exhibited significant differences 
in the two subgroups. C1 and C2 demonstrated a notice-
able enrichment in immune-related pathways based on the 
KEGG analysis. C3 was more active in tumour cell prolifer-
ation-related pathways, and these differences were statisti-
cally significant. The activation of the Hedgehog signalling 
pathway was found to be significantly increased in the C3 
pattern. Prior studies have demonstrated that the Hedge-
hog signalling pathway is aberrantly activated in EOC, 
increases the incidence of EOC, and leads to a poorer 
prognosis [47]. Conversely, the precise function of Hh sig-
nalling in the development and prognosis of EOC remains 
unclear. Despite the absence of obvious differences in clini-
cal characteristics, significant differences in TME immune 

Fig. 8 Protein expression of 10 crucial genes in epithelial ovarian carcinoma and normal ovary tissues based on HPA database
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cell infiltration and overall survival were observed among 
the three acetylation-related clusters and the two risk 
groups. T cells, follicular helper cells, activated dendritic 
cells, and M1 macrophages exhibited high levels of infil-
tration in the low-risk group. C2 presented with a poorer 
survival prognosis even though it was enriched with abun-
dant immune cells. TAMs and Tregs may play key roles in 
promoting the malignant progression of EOC. TAMs and 
Tregs are important immunosuppressive cells that may 
lead to tumour metastasis, drug resistance, angiogenesis, 
and immune escape, resulting in poor prognosis [48–50]. 
Many studies have shown that acetylation is important 
for the function and stability of TAMs and Tregs. More-
over, BBR inhibits inflammatory response in TAMs. This 
decreases the acetylation of  p65Lys310 by downregulating 
the activity of p300. Furthermore, it inhibits the transcrip-
tional activity and translocation of NF-κB [51]. It was also 
found that NAC1 reduced the stability mediated by acety-
lation of the housekeeping protein FoxP3 in Treg cells, 
inhibiting Treg cell development and leading to tumouri-
genesis [52]. Therefore, we suggested that the acetylation 
pattern exhibited a strong correlation with the infiltration 
of immune cell into the TME.

Many patients benefit from immunotherapy using ICB 
(e.g. PD-1, PD-L1, and CTLA-4 blockade), whereas others 
do not demonstrate a significant clinical response to this 
treatment. PD-1/PD-L1 blockade has shown marked effi-
cacy as a second-line therapy, whether as monotherapy or 
in combination with chemotherapy or CTLA-4 checkpoint 
inhibition, in patients with EOC. In the cisplatin-resistant 
group, a phase II clinical trial employing the PD-1 inhibitor 
pembrolizumab plus niraparib showed an objective remis-
sion rate (ORR) of 21% [53, 54]. In another phase II clinical 
trial, the combination of olaparib with the PD-L1 inhibitor 
durvalumab showed an ORR of 15% [55, 56]. These results 
suggest that remission rates remain low, emphasizing the 
need to screen patients suitable for immunotherapy. Our 
results showed that C1 was associated with an enhanced 
response to PD-1 blocker immunotherapy. Data from the 
IMVigor 210 cohort was employed to validate the immu-
notherapy responses in all three groups, consistent with 
previous test results. Additionally, the immunoinflamma-
tory phenotype was significantly enriched in C1, indicat-
ing a greater reactivity to immunotherapy. Consequently, 
we believe that acetylation models play a significant role 
in distinguishing various TIME and may serve as a reli-
able biomarker for selecting patients suitable for immu-
notherapy. In addition, TMB serves as a potent biomarker 
for forecasting the efficacy of immune checkpoint inhibi-
tor treatment in EOC patients [57]. We further explored 
the relationship of TMB between the three clusters and the 
two risk groups, considering the complexity of acetylation 
and individual heterogeneity. The TMB of C1 tumours and 

the low-risk group exhibited a notable increase, suggesting 
that acetylation patterns accurately characterise TME cell 
infiltration in individual patients.

Meanwhile, we also investigated the correlation 
between acetylation and the chemotherapeutic response. 
Cisplatin, paclitaxel, gemcitabine, capecitabine, etopo-
side, bevacizumab, and oxaliplatin are commonly admin-
istered as conventional chemotherapies for EOC. These 
are gradually being replaced by newer regimens, includ-
ing cisplatin plus paclitaxel and paclitaxel in combina-
tion with bevacizumab. We assessed the correlation 
between acetylation and sensitivity to chemotherapeu-
tic agents. The  IC50 values of all these drugs exhibited 
apparent differences among the three clusters, suggesting 
that acetylation patterns play a unique role in predicting 
chemotherapeutic efficacy and guiding clinical treatment.

Among the polygenic markers we established, four risk 
factors ( FOXO1, KYAT1, JUP, and DYRK1B) and six pro-
tective factors ( GALNT6, ACSM3, DNAJA1, PRDX5, 
TPMT, and SERPINB9) were identified. In previous stud-
ies, the enzyme N-Acetylgalactosaminyltransferase 6 
(GALNT6) has been shown to have a crucial role in the 
initial step of mucin-type O-glycosylation. Its involvement 
has been linked to the recurrence, lymph node metastasis, 
and chemoresistance of EOC by modulating EGFR activ-
ity, resulting in poor prognosis [58]. The transcription 
factor forkhead box protein O1 (FOXO1) functions as a 
transcriptional repressor of T-cell activation program [59] 
and serves as a suppressor of natural killer cell maturation 
and function [60]. It promotes the differentiation of reg-
ulatory T and B cells, inhibits the formation of T helper 
cells 1 (Th1) and Th17 cells, and is activated by dendritic 
cells (DC). Studies have shown that FOXO1 plays a key 
role as a downstream factor of the PI3K/Akt pathway in 
EOC. GnRH agonists may promote apoptosis in EOC 
cells through the upregulation of FOXO1 in the PI3K/
AKT signalling pathway, making FOXO1 a promising 
target for therapeutic intervention in the management of 
EOC [61]. Low FOXO1 expression was observed in plati-
num-resistant EOC, suggesting that FOXO1 could be tar-
geted for earlier diagnosis and more accurate treatment of 
EOC [62]. However, FOXO1 was identified as a risk factor 
in this work. Previous studies have indicated that FOXO1 
inhibits the progression of EOC, which may cause worse 
prognosis. However, the precise function of FOXO1 in the 
progression and outcome of EOC remains unclear. The 
tumour suppressor gene ACSM3 can inhibit the prolifera-
tion, migration, and invasion of EOC cells and may be a 
therapeutic target for EOC [63]. The expression of PRDXs 
family proteins is increased in ovarian cancer tissues 
in comparison to normal ovarian tissues. Furthermore, 
heightened expression of PRDX5 leads to unfavourable 
progression-free survival (PFS) outcomes in EOC patients 
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[64]. DYRK1B is usually amplified or upregulated in EOC, 
making it a potential therapeutic target for EOC ascites 
[65]. Other researchers have demonstrated the utility of 
SERPINB9 immunotherapy as a novel candidate to mod-
ulate ICB resistance [30]. The results of analysis of these 
genes broadly match the results of this work.

We explored the interaction between the risk group 
and clinical features, finding significant correlations of 
acetylation patterns with age, state, grade, and risk score. 
Survival analysis revealed that the two risk groups were 
excellent predictors of the survival index. A nomogram 
model was developed using four key characteristics 
(age, grade, stage, and risk score), enabling the predic-
tion of the likelihood of survival for patients with EOC 
at 1, 5, and 10 years. The ROC correction curve and AUC 
showed robust discriminant abilities.

Conclusions
Our study provides profound insights into the interac-
tions involving acetylation, TME, TMB, and responses 
to chemotherapy and immunotherapy. We demonstrated 
the utility of acetylation-related genes in distinguishing 
patterns of immune cell infiltration in TME and clini-
cal features, as well as their predictive capabilities for 
responses to ICBs and chemotherapy. These studies con-
tribute to enhancing clinical treatment strategies and 
patients screening for immunotherapy or chemotherapy, 
guiding future precision therapies.

Nevertheless, we acknowledge limitations in our 
research. Recent discoveries of acetylation-related pro-
teins imply that our collected genes may not be com-
prehensive enough, potentially introducing biases. The 
limited number of clinical samples and the absence of 
validation in other clinical databases, aside from public 
data, are additional constraints. To address these limita-
tions, we intend to collect more clinical samples for vali-
dation and extend our investigation to other reproductive 
tumours. Finally, the detailed mechanism by which acety-
lation patterns interact with TMB immune cell penetra-
tion is not fully understood, warranting further research.
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