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Abstract 

Background  To identify key genes associated with cisplatin resistance in ovarian cancer, a comprehensive analysis 
was conducted on three datasets from the GEO database and through experimental validation.

Methods  Gene expression profiles were retrieved from the GEO database. DEGs were identified by comparing gene 
expression profiles between cisplatin-sensitive and resistant ovarian cancer cell lines. The identified genes were fur-
ther subjected to GO, KEGG, and PPI network analysis. Potential inhibitors of key genes were identified through meth-
ods such as LibDock nuclear molecular docking. In vitro assays and RT-qPCR were performed to assess the expression 
levels of key genes in ovarian cancer cell lines. The sensitivity of cells to chemotherapy and proliferation of key gene 
knockout cells were evaluated through CCK8 and Clonogenic assays.

Results  Results showed that 12 genes influenced the chemosensitivity of the ovarian cancer cell line SKOV3, and 9 
genes were associated with the prognosis and survival outcomes of ovarian cancer patients. RT-qPCR results revealed 
NDRG1, CYBRD1, MT2A, CNIH3, DPYSL3, and CARMIL1 were upregulated, whereas ERBB4, ANK3, B2M, LRRTM4, EYA4, 
and SLIT2 were downregulated in cisplatin-resistant cell lines. NDRG1, CYBRD1, and DPYSL3 knock-down significantly 
inhibited the proliferation of cisplatin-resistant cell line SKOV3. Finally, photofrin, a small-molecule compound target-
ing CYBRD1, was identified.

Conclusion  This study reveals changes in the expression level of some genes associated with cisplatin-resistant ovar-
ian cancer. In addition, a new small molecule compound was identified for the treatment of cisplatin-resistant ovarian 
cancer.
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Introduction
Ovarian cancer (OC) remains a prevalent gynecologi-
cal malignancy despite advancements in diagnosis and 
treatment over recent decades. This challenge is com-
pounded by the absence of distinctive symptoms, often 
leading to advanced-stage diagnoses and ranking as the 
fifth-highest cause of global cancer mortality in women 
[1, 2]. According to World Health Organization sta-
tistics, approximately 150,000 individuals succumb to 
OC annually worldwide [1–4], with the majority being 
women over 50 years old [2, 4, 5]. Given the lack of 
effective early tumor markers and diagnostic methods 
for ovarian cancer, it is imperative to identify key genes 
associated with the progression of ovarian cancer, par-
ticularly those linked to poor prognosis.

Limited options for early detection and effective 
treatment are major contributors to poor prognosis 
and high mortality rates in ovarian cancer. However, 
chemotherapy resistance has emerged as a critical fac-
tor which further hinders successful treatment and 
worsening patient outcomes [6, 7]. The primary debulk-
ing surgery and platinum-based chemotherapy or neo-
adjuvant chemotherapy, are the first line treatments for 
ovarian cancer, followed by interval debulking surgery 
and additional post-surgery chemotherapy [7]. Despite 
high response rates, the median progression-free sur-
vival rate of ovarian cancer patients undergoing these 
treatments is still low [8]. Furthermore, over 70% of 
ovarian cancer patients are prone to relapse, developing 
strong resistance to platinum drugs [9, 10]. Currently, it 
is challenging to treat ovarian cancer due to the emer-
gence of platinum resistance. Cisplatin, recognized as 
one of the most effective chemotherapeutic drugs for 
ovarian cancer, forms DNA-cisplatin crosslinks with 
tumor cell DNA, inducing DNA damage, inhibiting 
DNA replication, and promoting cell apoptosis [10–
12]. However, tumor cells often acquire drug resist-
ance through various mechanisms [13]. This calls for 
the development of new molecularly targeted drugs 
to prevent disease progression. However, the complex 
mechanisms behind cisplatin resistance and the genetic 
variability among ovarian cancer patients have limited 
our ability to alleviate drug resistance [14, 15]. To our 
knowledge, there are no effective diagnostic markers 
for predicting cisplatin resistance in ovarian cancer 
patients. In this study, we aimed to explore the molecu-
lar mechanism of cisplatin resistance and develop new 
targeted therapies against cisplatin resistance in ovar-
ian cancer patients.

Methods
Study design and gene expression data collection
In this study, to maximize the generalizability of the 
cisplatin resistance genes obtained from the final 
screen, we collected the gene expression profiles of 
three different cisplatin-resistant/sensitive ovar-
ian cancer cell lines. Three gene expression profiles 
(GSE33482, GSE45553, and GSE115939) were down-
loaded from the Gene Expression Omnibus database. 
Firstly, common differentially expressed genes (DEGs) 
were screened out. Subsequently, a comprehensive 
bioinformatics analysis was performed to determine 
potential molecular mechanisms of drug resistance. 
Additionally, the hub genes identified were experimen-
tally validated. Finally, we performed virtual screening 
of FDA-approved drugs and molecular docking of the 
screened drug-resistant genes to identify compounds 
with potential inhibitory effects on drug-resistant mol-
ecules. GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/) was used to analyze mRNA expression levels in 
OC patients. The dataset used in our study includes 
GSE33482, GSE45553and GSE115939.

Identification of differentially expressed genes (DEGs)
GEO2R was used to identify differential genes [16]. 
We utilized the GEO2R platform within the GEO data-
base to analyze gene expression differences between 
cisplatin-resistant and cisplatin-sensitive ovarian can-
cer patients. Employing default parameters for iden-
tifying differentially expressed genes, we downloaded 
all results in .txt format for further processing using 
Excel. Genes with P-value <0.05 and |log2FC|≥1.0 were 
considered as differential genes. More details in Sup-
plementary File 1. The FunRich tool was used to make 
Venn diagrams [17].

Functional analyses
Following the identification of common DEGs, we 
performed functional enrichment analysis using sev-
eral databases: GO, KEGG, Reactome, and WikiPath-
ways. These databases were employed to elucidate the 
biological pathways and functions associated with the 
common DEGs. p<0.05 was considered statistically sig-
nificant. More details in Supplementary File 2.

PPI network construction
A PPI network was constructed using STRING data-
base (https://​string-​db.​org) to analyze the interactions 
between DEGs. If the confidence setting was > 0.7, pro-
teins that do not interact are hidden.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org
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Prognostic signature of hub genes
Kaplan‐Meier plotter (www. kmplot.com) was used to 
perform Overall Survival (OS), progression‐free sur-
vival (PFS) and Post-Progression Survival (PPS) analy-
ses of hub genes.

Construction of miRNA‑gene network
FUNRICH, miRTarBase [18], Targetscan (v7.0;  targets-
can.org) and miRDB [19] databases were used to predict 
miRNA of hub genes.The collected common miRNA and 
hub genes were connected to construct a miRNA-gene 
regulatory network. More details in Supplementary File 
3.

Establishment of cisplatin‑resistant SKOV3 cells (SKOV3/
DDP) and cell culture
The human ovarian cancer cell line SKOV3 (Homo sapi-
ens, human, RRID: CVCL_0532) was purchased from the 
Cell Bank of the Chinese Academy of Sciences (Shanghai, 
China). Cisplatin-resistant cell lines were established in 
our lab. Cell lines were authenticated by STR profiling. 
All cell lines were cultured in DMEM medium (Hyclone, 
Logan, U.S.) supplemented with 10% fetal bovine serum 
(FBS, Gibco) and 100 U/mL of penicillin, and 100 U/
mL of streptomycin (Invitrogen, U.S.), and incubated at 
5% CO2 and 37℃ with saturated humidity. The mainte-
nance concentration of cisplatin in the drug-resistant cell 
line was 1 μmol/L. All experiments were performed with 
mycoplasma-free cells.

RT‐qPCR
Total RNA from SKOV3/DDP cell lines was extracted 
using the RNA Quick Purification Kit (ES Science, Shang-
hai, China), and cDNA was synthesized using the cDNA 
Reverse Transcription kit (Vazyme, Nanjing, China). RT-
qPCR was performed using TB Green™ Premix Ex Taq™ 
II (RR420A; Takara, China) with specific primers on a 
Bio-Rad CFX-96 Real-time PCR system (Bio-Rad, USA), 
following the manufacturer’s instructions. The Ct of the 
identified genes were normalized to GAPDH, an internal 
control gene, and data were analyzed using the 2−ΔΔCT 
method. All PCR primers are listed in Supplementary 
Table 1.

siRNA transfection
siRNA targeting NDRG1, CYBRD1, and MT2A were 
designed and synthesized by Ribobio Company (Ribo-
bio, China). SKOV3/DDP cells were seeded into 12-well 
plates and transfected using lipofectamine 3000 (Invit-
rogen, Carlsbad, CA, USA) following the manufacturer’s 
protocol. After incubation for 48 hours, the expression 
levels of NDRG1, CYBRD1, and MT2A were evaluated 
by qPCR.

CCK8 Detection and IC50 determination of cisplatin 
on ovarian cancer cells
Ovarian cancer cells were harvested and seeded into 
96-well cell culture plates at a density of 1 × 103 cells/
well. The plates were then incubated overnight at 37 °C 
in a 5% CO2 atmosphere. After incubation, 10 μl of CCK8 
was added to each well, and the cells were incubated at 
37°C for 2 h. The IC50 of cisplatin for both SKOV3 and 
SKOV3/DDP cell lines was subjected to the CCK8 assay. 
Cells were treated with various concentrations of cispl-
atin, ranging from 0, 0.25, 1, 2, 4, 8, 16 and 32 μM. After 
48 hours of treatment, CCK-8 was added to each well, 
and the OD450 value of each well was measured using a 
spectrophotometer.

Colony formation
The cell suspension was appropriately diluted and seeded 
into 6-well plates at a density of 1000 cells per well. The 
plates were then incubated in a 37°C, 5% CO2 environ-
ment for 2 weeks. Once colonies were formed, the cells 
were rinsed twice with PBS, fixed with 4% paraformalde-
hyde for 10 min, stained with 0.5% crystal violet for 30 
min, and subsequently counted and photographed under 
an optical microscope.

Molecular docking
Molecular docking was conducted using the Discovery 
Studio, a widely used software for molecular modeling, 
virtual screening, and molecular simulation. The soft-
ware shortens the time and cost associated with screen-
ing potential drugs for diseases. Protein crystal structures 
were obtained from the PDB data and preprocessed using 
the prepared protein module in Discovery Studio 2019. 
The dataset used for virtual screening was obtained from 
The NCGC Pharmaceutical Collection database [20], 
comprising drugs approved by the FDA. Docking experi-
ments were conducted using LibDock, and the ligand 
pose with the highest score was considered the optimal 
docking pose.

Statistical analysis
GraphPad Prism 8.0 was utilized for plotting and analyz-
ing IC50 values and other data, with all results presented 
as Mean ± SEM. Differences between groups were ana-
lyzed using the student’s t-test and P < 0.05 was consid-
ered statistically significant.

Results
Identification of DEGs between cisplatin‑resistant 
and sensitive ovarian cancer cell lines
The gene expression profiles of cisplatin-resistant ovarian 
cancer cell lines (GSE33482, GSE45553, and GSE115939) 
were obtained from the GEO database. The datasets 
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selected encompassed diverse ovarian cancer cell lines, 
GSE33482 included gene expression data from a cispl-
atin-sensitive/resistant ovarian cancer cell line (A2780); 
GSE45553 comprised 4 cases of cisplatin-sensitive and 
4 cases of cisplatin-resistant cell lines, while GSE115939 
involved two experimental groups, IGROV1 wild-type 
cells, and IGROV1 Cisplatin- resistant cells, each with 
two biological replicate samples.

To ensure the reproducibility of subsequent research, 
GEO2R was directly employed to analyze the DEGs in all 
data sets. The threshold was set at a p-value < 0.05, and 
a fold change ≥ 2. The volcano plots for the three data-
sets (GSE33482, GSE45553, and GSE115939) depicting 
the DEGs are presented (Fig. 1A). Furthermore, detailed 
expression information for all genes can be accessed in 
Supplementary File 1. The Venn diagram illustrates a 
total of 41 DEGs with consistent expression trends iden-
tified from the three datasets, comprising 22 commonly 
up-regulated and 19 commonly down-regulated genes 
(Fig. 1B).

Functional enrichment of common DEGs and construction 
of protein‑protein interaction networks
The 22 co-upregulated and 19 co-downregulated genes 
were analyzed using the GO database, including biologi-
cal process (BP), cellular component (CC), and molecular 
function (MF). Applying a p-value <0.05 as the threshold, 
the genes were mapped to the background set (Fig. 2A). 
In the GO-BP classification, the up-regulated DEGs were 
significantly involved in cell division and cell cycle pro-
gression, while down-regulated DEGs were significantly 
involved in neuronal differentiation, organ develop-
ment, and related processes. For GO-CC classification, 
upregulated DEGs were associated with filamentous 
actin, actin filaments, synapses, transport vesicles, and 
chimeras, whereas downregulated DEGs were associ-
ated with synapses, basement membranes, MHC class I 
complexes, and the extracellular matrix, etc. (Fig. 2B). In 
GO-MF classification, upregulated DEGs were enriched 
for activities such as ferric-chelate reductase, inor-
ganic diphosphatase, protein histidine phosphatase, 
very-long-chain 3-hydroxyacyl-CoA dehydratase, and 
3-hydroxy-arachidoyl-CoA dehydratase. Conversely, 
down-regulated DEGs were enriched for identical 
protein binding, protein homodimerization activity, 
N-acetylglucosamine-6-sulfatase, Roundabout binding, 
and laminin-1 binding (Fig.  2C). The KEGG database 
was also employed to explore the potential biological 
functions of DEGs in drug resistance. Fig. 2D shows that 
up-regulated DEGs were involved in important path-
ways including proteoglycans in cancer, epstein-Barr 
virus infection, Human T-cell leukemia virus 1 Infection, 
and microRNAs in cancer, while down-regulated DEGs 

participated in important pathways including mineral 
absorption, fatty acid elongation, biosynthesis of unsat-
urated fatty acids, and type I diabetes mellitus. Specific 
details of functional enrichment analysis can be found in 
the Supplementary file 2.

PPI networks of the 41 DEGs were constructed and 
visualized using the STRING database. After removing 
isolated nodes, the remaining DEGs formed a complex 
multi-center interaction network graph, comprising 12 
nodes (up-regulated genes: NDRG1, CYBRD1, MT2A, 
CNIH3, DPYSL3, CARMIL1; down-regulated genes: 
ERBB4, ANK3, B2M, LRRTM4, EYA4, SLIT2) and 7 
edges (Fig. 2E).

Prognostic survival analysis
The prognostic significance of the 12 hub genes was 
examined through Kaplan-Meier analysis, focusing spe-
cifically on patients who had undergone platinum-based 
drug treatment. In the platinum-based treatment cohort, 
except for B2M, CNIH3, and CARMIL1, the remaining 9 
genes demonstrated a close association with patient prog-
nosis and survival (Fig.  3). High expression of NDRG1 
correlated with poorer PFS in patients (Fig.  3A). High 
expression of CYBRD1 (Fig.  3B) and DPYSL3 (Fig.  3C) 
was associated with poorer PFS, OS, and PPS in cispl-
atin-resistant patients. Reduced expression of ERBB4 was 
associated with poorer PFS in cisplatin-resistant patients 
(Fig. 3D). Low expression of ANK3 was associated with 
poorer PFS, OS, and PPS in cisplatin-resistant patients 
(Fig.  3E). Notably, high expression of MT2A was asso-
ciated with improved PFS and PPS in cisplatin-resist-
ant patients (Fig.  3F). Low expression of LRRTM4 was 
associated with better OS and PPS in cisplatin-resistant 
patients (Fig. 3G). Reduced expression of EYA4 (Fig. 3H), 
and SLIT2 (Fig.  3I) was associated with improved PFS, 
OS, and PPS in cisplatin-resistant patients.

Furthermore, genetic alteration information for these 
key genes was analyzed using cBioPortal. As shown in 
Fig.  4, the 12 hub genes exhibited varying degrees of 
genetic alterations in 1880 patients with serous ovar-
ian cancer. These changes included missense mutations, 
structural variants, splicing mutations, amplifications, 
deep deletions, etc. (Fig.  4A). Notably, NDRG1 was 
amplified in 31% of these 1880 patients, with gene ampli-
fication being the predominant alteration in different 
types of serous ovarian cancer (Fig. 4B).

Construction of miRNA‑hub gene regulatory network
To better understand the potential mechanisms of hub 
genes in cisplatin regulation in ovarian cancer patients, 
gene regulatory networks were analyzed. Only miR-
NAs present in at least two databases (FUNRICH, miR-
TarBase, Targetscan, miRDB) are considered target 
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Fig. 1  DEGs analysis. A DEGs between the cisplatin-sensitive and cisplatin-resistant groups are shown on a volcano plot. B Venn diagram shows 
common DEGs
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Fig. 2  Functional analysis. A GO terms (Biological Process, BP). B GO terms (Cellular Component, CC). C GO terms (Molecular Function, MF). D KEGG 
Enrichment. E DEGs were filtered into the PPI network through STRING database
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Fig. 3  Prognostic survival analysis. A OS of NDRG1. B PFS, OS and PPS of CYBRD1. C PFS of DYBRD1. D PFS of ERBB4. E PFS, OS and PPS of ANK3. F 
PFS and PPS of MT2A. G OS and PPS of LRRTM4. H PFS, OS and PPS of EYA4. I PFS, OS and PPS of SLIT2
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Fig. 4  Information on the genetic alterations of the hub genes. A The genetic alterations related to the hub genes are shown through a visual 
summary across a set of ovarian serous cystadenocarcinoma samples. B An overview of the alterations of hub genes in the genomics datasets 
of ovarian serous cystadenocarcinoma in the TCGA database
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miRNAs of hub genes. The Cytoscape software was 
used to map the miRNA-hub gene regulatory network. 
As shown in Fig.  5, the gene regulatory network con-
sisted of 11 hub genes and 211 miRNAs (Supplemen-
tary file 3). Notably, the miRNAs appearing in all four 
databases included: hsa-miR-182-5p (target miRNA of 
NDRG1); hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-93 
-5p, hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-
519d-3p (miRNA targeting CYBRD1); hsa-miR-27b-3p 
(miRNA targeting EYA4); hsa-miR-221-3p (miRNA tar-
geting ERBB4); and hsa-miR-340-5p (miRNA targeting 
B2M). Additionally, hsa-miR-330-3p, hsa-miR-497-5p, 
hsa-miR-15a-5p, hsa-miR-15b-5p, and other miRNAs 
jointly regulate multiple hub genes.

In vitro validation of the role of 12 genes in cisplatin 
resistance
To validate the results of the bioinformatics analysis, cis-
platin-resistant SKOV3 cell lines were obtained through 
cisplatin-pressurized screening. Gene expression lev-
els were detected by qPCR, indicating upregulation of 
NDRG1, CYBRD1, MT2A, CNIH3, DPYSL3, and CAR-
MIL1, while ERBB4, ANK3, B2M, LRRTM4, EYA4, and 
SLIT2 were downregulated (Fig. 6A). Subsequently, three 
3 significantly upregulated genes NDRG1, CYBRD1, 
and MT2A were selected for further study. Cisplatin-
resistant SKOV3 cell lines with knockdown of NDRG1, 
CYBRD1, and MT2A were constructed using siRNA, 
and knockdown efficiency was verified by qPCR (Fig. 6B). 
CCK8 (Fig. 6C) and clonogenic assays (Fig. 6D) were per-
formed with SKOV3 cells and cisplatin-resistant SKOV3 

Fig. 5  Construction of miRNA-hub gene regulatory network. The collected common miRNA and hub genes were connected to construct 
a miRNA-gene regulatory network
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cells. Compared to these control cells, knocking down 
NDRG1, CYBRD1, and MT2A significantly reduced the 
ability of the cells to proliferate and form colonies, even 
in the absence of cisplatin treatment.

Small molecule compound screening
Based on the results of survival analysis and existing 
research, CYBRD1 was selected as the target for drug 
screening. The 3D structure of CYBRD1 (PDB: 5ZLG) 
was obtained from the PDB database (Fig. 7A). Protein-
drug virtual screening was conducted through the Lib-
Dock program, revealing the best docking posture shown 
in Fig. 7B. The results indicated that CYBRD1 and pho-
tofrin had the highest binding scores. Furthermore, 
hydrogen bond interactions were analyzed (Fig.  7C), 
demonstrating that CYBRD1 formed 7 pairs of hydrogen 
bonds with photofrin. Finally, the binding free energy of 
CYBRD1 and photofrin was calculated (Fig.  7D). When 
the value of binding free energy is negative, the system is 
stable.

Discussion
Ovarian cancer is the leading cause of mortality among 
women, with the worst prognosis among gynecological 
tumors [1, 2, 4]. Over the last few decades, chemotherapy 
has shown promising results in ovarian cancer patients, 
with cisplatin therapy emerging as the primary treat-
ment option [9–12]. While most ovarian cancer patients 
initially respond well to cisplatin treatment, resistance 
inevitably develops over time [9–12]. This emerging 
resistance presents a major hurdle in treating ovarian 
cancer, currently standing as the biggest obstacle doctors 
face in the clinic. To unravel the complex mechanisms 
behind this resistance, researchers are increasingly turn-
ing to big data analysis. Currently, bioinformatics analysis 
is widely used to analyze diagnostic and therapeutic tar-
gets for various cancers [21–24]. In this study, to identify 
potential therapeutic targets for cisplatin resistance in 
ovarian cancer patients, data were obtained from three 
GEO datasets. Each dataset was derived from a cisplatin-
resistant/sensitive ovarian cancer cell line. The rationale 
behind selecting samples from different cisplatin-resist-
ant/sensitive cell lines lied in the need to expand the 
sample size and enhance statistical robustness. In total, 

10 cisplatin-sensitive and 10 cisplatin-resistant cell line 
samples were included in this study. Differential expres-
sion analysis identified 41 common DEGs which were 
presented in Venn diagrams, comprising 22 upregulated 
and 19 downregulated genes. Subsequently, GO and 
KEGG analyses were conducted to identify the biological 
functions of these DEGs and mechanisms behind cispl-
atin resistance. A PPI network was constructed to inves-
tigate the shared regulatory pathways between these 
genes. The prognostic value of these DEGs was deter-
mined through survival analysis. Bioinformatic analysis 
revealed that NDRG1, CYBRD1, and MT2A expressions 
upregulated and were associated with poor prognosis of 
ovarian cancer patients in the platinum-based treatment 
group, whereas upregulation of ERBB4 and ANK3 cor-
related with improved prognosis. Our research revealed 
some interesting paradoxes. For instance, a gene called 
MT2A showed significantly higher expression in the 
cisplatin-resistant group. However, patients within the 
cisplatin-treated group who had high MT2A expression 
actually had a better prognosis. Similarly, three other 
genes (LRRTM4, EYA4, and SLIT2) were expressed at 
much lower levels in the cisplatin-resistant group. Sur-
prisingly, low expression of these genes was also linked to 
a better prognosis for patients. These findings highlight 
the intricate nature of gene regulation and the multifac-
eted mechanisms underlying drug resistance. Although 
big data offers a powerful tool for analyzing drug-resist-
ant genes, interpreting the results requires a cautious 
approach. The intricate ways genes are regulated and the 
multifaceted mechanisms of drug resistance can lead to 
seemingly contradictory findings. Researchers should 
carefully consider these complexities to draw accurate 
conclusions from big data analysis.

In this study, we further explored the upregulated 
genes associated with poor prognosis in ovarian cancer 
patients in the cisplatin-resistant group. NDRG1, a gene 
expressed in various tumors, has been reported to have 
pleiotropic effects in cancer [25]. Luo et al. discovered a 
strong correlation between high NDRG1 expression and 
metastasis and recurrence of breast cancer. Nagai et  al 
identified NDRG1 as an independent prognostic factor 
for breast cancer [26]. NDRGl’s role in cancer appears 
complex and context-dependent. Studies have shown 

(See figure on next page.)
Fig. 6  In vitro validation of hub genes. A 14 genes in SKOV3 cells and SKOV3/DDP cells were measured by qRT‐PCR. B The expression of NDRG1, 
CYBRD1 and MT2A genes detected in SKOV3/DDP cells by qRT‐PCR. C Left panel: The cell viability of SKOV3 and SKOV3/DDP cells was assessed 
using CCK-8 assay at 48 hours.The IC50s of DDP for SKOV3 and SKOV3/DDP cells were 3.431 and 15.76 μM/L, respectively. Right panel: The cell 
viability of SKOV3/DDP cells and 3 gene knockdown SKOV3/DDP cell lines were assessed using CCK-8 assay at 48 hours D Colony formation 
of untreated SKOV3/DDP cells and SKOV3/DDP cells+5 μmol DDP and statistical analysis from 3 independent experiments .(****P < 0.0001; ***P < 
0.001; **P < 0.01;*P < 0.05, Student’s t-test, Error bars are±SEM)
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Fig. 6  (See legend on previous page.)
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Fig. 7  Virtual screening of small molecules inhibitors. A The crystal structure of CYBRD1. B the predicted binding modes of photofrin with CYBRD1. 
C The docking detail between photofrin with CYBRD1. D Analyze thebond-forming relationships between photofrin and CYBRD1. E Calculate 
the binding free energy for the docked pose
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it plays a crucial role in regulating the progression and 
chemoresistance of triple-negative breast cancer [27]. 
Conversely, NDRG1 appears to act as a tumor suppres-
sor in prostate and pancreatic cancers [28]. Interestingly, 
a large-scale analysis of mutations in women’s cancers 
(breast, ovarian, endometrial, and cervical) revealed a 
high mutation frequency (19%) in NDRG1, second only 
to MYC (22%). This suggests a potential role for NDRG1 
in these cancers, particularly those influenced by hor-
mones [29]. This suggests that NDRG1 may still have 
undiscovered roles in ovarian cancer. CYBRD1 functions 
as a ferric iron reductase, regulating signaling pathways 
related to iron metabolism [30]. Chen et  al. used big 
data to show that CYBRD1 as an independent predic-
tor of adverse outcomes in ovarian cancer can be used in 
predicting clinical prognosis [31]. Additionally, a meta-
analysis of single-gene prognostic biomarkers in ovar-
ian cancer revealed a correlation between high CYBRD1 
expression and poor prognosis [32]. Although few stud-
ies have documented the association of CYBRD1 with 
ovarian cancer, the evidence suggests that CYBRD1 can 
treat ovarian cancer. DPYSL’s involvement in cancer is 
less explored, with current findings linking it solely to 
the metastasis of lung cancer [33], prostate cancer [34], 
breast cancer [30], and liver cancer [35].

MT2A has been implicated in the development of vari-
ous cancers [36–38]. Zhao et al. showed that MT2A con-
fers oxaliplatin resistance in colorectal cancer cells [38]. 
Shimizu M et  al found that MT2A exacerbates ESCC 
progression [37]. Another study on high-grade epithe-
lial ovarian cancer identified that MT2A expression was 
increased after chemotherapy, highlighting its potential 
association with drug resistance [36]. ERBB4, a member 
of the ErbB/HER family, has been detected in malignant 
tumors [39]. In contrast to its family members, EGFR 
and ERBB2, the role of ERBB4 in human malignancies is 
relatively ambiguous, displaying dual identities as both a 
tumor suppressor protein and an oncoprotein [40, 41]. 
Currently, the role of ERBB4 in the regulation of ovarian 
cancer cell growth is controversial. While some studies 
suggest that ERBB4 is a poor prognostic factor in ovar-
ian cancer, others indicate that is inhibits cancer growth 
[39]. Notably, research on ERBB4 in ovarian cancer pri-
marily focuses on benign ovarian tissue and malignant 
ovarian tumors. SLIT2 is a tumor suppressor in ovarian 
cancer [42, 43]. Qiu et al. found that the SLIT2 promoter 
was significantly hypermethylated in ovarian cancer sam-
ples [43]. Lin et al. demonstrated that SLIT2 knockdown 
in an ovarian cancer cell model increased cell migra-
tion and enhanced the expression of multiple oncogenic 
signaling pathways [42]. Moreover, our study employed 
Discovery Studio for the virtual screening of drugs tar-
geting the CYBRD1 protein. The selected drugs are all 

FDA-approved drugs (~1500 compounds)with good 
safety profiles, which reduces the time and cost associ-
ated with new drug development. The Libdock program 
assigns scores to each docking pose, with a higher score 
indicating a more stable docking pose. The results indi-
cated that photofrin can bind with CYBRD1 with high 
affinity, demonstrating interaction potential. This sug-
gests its potential use as a targeted drug for cisplatin-
resistant ovarian cancer patients.

In this study, multiple cisplatin resistance datasets 
were used to identify key genes associated with cisplatin 
resistance in ovarian cancer, making the screened genes 
universally relevant. In addition, in vitro experiments 
showed that NDRG1, CYBRD1, and MT2A played a role 
in ovarian cancer cisplatin resistance. Our study also pre-
sents some exciting opportunities for future research. 
By utilizing virtual screening technology, we identified 
potential drugs targeting the newly discovered resistance 
genes. This approach has the potential to significantly 
reduce the time and cost associated with traditional drug 
discovery methods. However, it’s important to acknowl-
edge the limitations of this initial study. Firstly, the rela-
tively small sample size might have limited our ability 
to identify all relevant cisplatin-resistance genes. Sec-
ondly, we haven’t fully explored the specific mechanisms 
by which these genes contribute to drug resistance. In 
future, research should focus on two key areas: 1) elu-
cidating the detailed mechanisms of resistance medi-
ated by these genes, and 2) validating and developing the 
potential drugs identified through virtual screening.

Conclusion
In summary, this study explores key genes associ-
ated with cisplatin-resistant ovarian cancer. The results 
demonstrate that NDRG1, CYBRD1, MT2A, DPYSL3, 
ERBB4, ANK3, LRRTM4, EYA4, and SLIT2 can serve 
as predictive biomarkers for both cisplatin resistance 
and poor prognosis in OC patients. Notably, cell experi-
ments were performed to validate the roles of NDRG1, 
CYBRD1, and MT2A in cisplatin resistance in ovarian 
cancer. Additionally, the study identifies photofrin as a 
potential CYBRD1-targeted drug for cisplatin-resistant 
ovarian cancer patients. These findings present a prom-
ising target for drug development to overcome cisplatin 
resistance in OC.
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