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Abstract
Background  Ovarian serous cystadenocarcinoma, accounting for about 90% of ovarian cancers, is frequently 
diagnosed at advanced stages, leading to suboptimal treatment outcomes. Given the malignant nature of the disease, 
effective biomarkers for accurate prediction and personalized treatment remain an urgent clinical need.

Methods  In this study, we analyzed the microbial contents of 453 ovarian serous cystadenocarcinoma and 68 
adjacent non-cancerous samples. A univariate Cox regression model was used to identify microorganisms significantly 
associated with survival and a prognostic risk score model constructed using LASSO Cox regression analysis. Patients 
were subsequently categorized into high-risk and low-risk groups based on their risk scores.

Results  Survival analysis revealed that patients in the low-risk group had a higher overall survival rate. A nomogram 
was constructed for easy visualization of the prognostic model. Analysis of immune cell infiltration and immune 
checkpoint gene expression in both groups showed that both parameters were positively correlated with the risk 
level, indicating an increased immune response in higher risk groups.

Conclusion  Our findings suggest that microbial profiles in ovarian serous cystadenocarcinoma may serve as 
viable clinical prognostic indicators. This study provides novel insights into the potential impact of intratumoral 
microbial communities on disease prognosis and opens avenues for future therapeutic interventions targeting these 
microorganisms.
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Introduction
Ovarian cancer is one of the most common malignant 
tumors of the female reproductive system worldwide, 
with 313,959 new cases and 207,252 deaths recorded in 
2020 [1]. The past decade has shown a trend of increas-
ing annual incidence. Due to its insidious onset and lack 
of obvious symptoms in the early stages, 70% patients 
present with advanced disease at the time of clinical con-
sultation and the reported 5-year survival rate of ovarian 
cancer is only ~ 30% [2]. The most frequent type of ovar-
ian cancer is ovarian serous cystadenocarcinoma (OSC), 
accounting for ~ 90% of all ovarian malignancies [3]. Early 
and adequate screening for OSC should aid in improving 
patient survival. However, the sensitivity of early disease 
screening of CA-125, the most commonly used serum 
biomarker for OSC, in postmenopausal women is only 
50–60% [4]. Integration of imaging methods, such as vag-
inal ultrasound, with combined usage of multiple serum 
biomarkers, has been shown to improve screening sen-
sitivity for OSC [5]. Therefore, identification of reliable 
tumor markers is critical for timely diagnosis. In recent 
years, the relationship between dysregulation of micro-
organisms and occurrence of different cancer types, 
including colorectal cancer [6], hepatocellular carcinoma 
[7], breast cancer [8], and OSC [9], has been a hot topic 
of research focus. Microorganisms regulate a variety of 
physiological processes in the host, including immune 
system activation and metabolic regulation, and thereby 
play an important contributory role in the occurrence 
and progression of tumors [10, 11]. The collective find-
ings to date suggest that microbiota within tumors have 
evolved over time into novel tumorigenesis regulators 
and could serve as potential biomarkers.

Microbiota regulate carcinogenesis in several ways and 
influence the tumor microenvironment (TME), includ-
ing the inflammatory response, thereby affecting treat-
ment outcomes. The importance of the tumor-associated 
microbiome in cancer immunotherapy is increasingly 
acknowledged [12]. High-throughput sequencing tech-
nology has revealed significantly lower microbial diver-
sity and richness index of OSC relative to normal control 
tissues [13, 14], suggesting that changes in microbial flora 
contribute to the incidence and progression of malig-
nancy. In addition, recent reports indicate that changes 
in gut microflora are closely related to the clinical out-
come of OSC, providing guidance for the efficacy of 
treatments, such as probiotics [15]. Sheng and co-work-
ers [16] reported that tumor microbiota can serve as an 
independent prognostic predictor of OSC survival. In 
their study, characteristics of the tumor microbiome 
had significant prognostic value in OSC patients classi-
fied into high- and low-risk groups using the Cox model 
based on 32 microbes.

In the present study, we investigated the microbiome 
of OSC and paracancerous tissue samples in the TCGA 
database, constructed a survival model based on micro-
bial abundance, and identified specific microbial popu-
lations associated with prognosis. High abundance of 
g_Simiduia, g_Halolamina, g_Brachymonas, and g_Tera-
sakiella was associated with increased overall survival 
(OS) times, while g_Magnetospirillum, g_Luteimonas, 
g_Mitsuokella, g_Erwinia, and g_Salinisphaera were 
associated with poor prognosis, supporting the possibil-
ity of microbial signatures as prognostic biomarkers in 
patients with OSC. We further assessed the clinical value 
of high- and low-risk groups by establishing a nomogram 
model that integrated clinical factors for prediction of OS 
probability at 1, 3 and 5 years. The microbiome is consid-
ered a secondary genome owing to its significant impact 
on human health and disease [17]. The current study 
provides novel insights into the impact of the internal 
microbiome on disease progression of OSC. The immune 
system is known to play an important role in cancer and 
tumor-infiltrating immune cells (TIICs) are one of the 
main components of the TME. The compositions and 
functions of TIICs vary with host immune status, indica-
tive of their potential prognostic value [18]. Comparison 
of immune cell infiltration profiles between high- and 
low-risk groups of OSC revealed differences in the TME, 
supporting a critical role of TIICs in tumorigenesis and 
progression.

In this study, a survival model based on microbial 
abundance was constructed using TCGA ovarian micro-
biome data. A Cox regression clinical prediction model 
was generated based on differences in tumor microbiota 
and LASSO regression screening variables. A nomogram 
was drawn and immune cell infiltration and checkpoint 
gene expression differences related to OSC progression 
and survival outcomes displayed. Overall, microbiome-
based diagnosis of cancer should provide significant 
clinical benefits along with novel information for further 
in-depth research into the associations between intratu-
mor microorganisms and malignancies.

Materials and methods
Screening and identification of prognosis-associated 
microbial signatures
The following datasets were obtained from the Can-
cer Genome Atlas Ovarian Cancer (TCGA-OV) data-
base for analysis: microbiome abundance data (http://
ftp.microbio.me/pub/cancer_microbiome_analysis/
TCGA/Kraken/Kraken-TCGA-Voom-SNM-Plate-Cen-
ter-Filtering-Data.csv), microbiome clinical data (http://
ftp.microbio.me/pub/cancer_microbiome_analysis/
TCGA/Kraken/Metadata-TCGA-Kraken-17625-Sam-
ples.csv), expression data (https://gdc-hub.s3.us-east-1.
amazonaws.com/download/TCGA-OV.htseq_fpkm.tsv.

http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Kraken-TCGA-Voom-SNM-Plate-Center-Filtering-Data.csv
http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Kraken-TCGA-Voom-SNM-Plate-Center-Filtering-Data.csv
http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Kraken-TCGA-Voom-SNM-Plate-Center-Filtering-Data.csv
http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Kraken-TCGA-Voom-SNM-Plate-Center-Filtering-Data.csv
http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Metadata-TCGA-Kraken-17625-Samples.csv
http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Metadata-TCGA-Kraken-17625-Samples.csv
http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Metadata-TCGA-Kraken-17625-Samples.csv
http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Metadata-TCGA-Kraken-17625-Samples.csv
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-OV.htseq_fpkm.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-OV.htseq_fpkm.tsv.gz
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gz), survival data (https://tcga-xena-hub.s3.us-east-1.
amazonaws.com/download/survival%2FOV_survival.
txt), and sample phenotype data (https://tcga-xena-
hub.s3.us-east-1.amazonaws.com/download/TCGA.
OV.sampleMap%2FOV_clinicalMatrix). From the 
Ensembl database, the human.gtf file (Homo_sapi-
ens.GRCh38.99.gtf.gz) was downloaded (http://www.
ensembl.org/info/data/ftp/index.html). The immune 
cell gene set was obtained from the List of Pan-cancer 
Immune Metagenes using PubMed Identifier (PMID) 
28,052,254. Table  1 presents the clinical features of 
patients in the TCGA-OV dataset.

Analysis of OSC tumor and normal tissue microbiota 
profiles at six taxonomic levels
Microbiome samples were acquired by integrating both 
genomic and transcriptomic data and pooled according 
to the TCGA codes for samples. Microbial abundance-
related information for each sample was obtained and the 
average abundance of the populations determined at each 
taxonomic level: kingdom, phylum, class, order, family, 
and genus. Boxplots of the top 20 abundant microbial 
species at each level were generated.

Identification of specific microbial biomarkers based on 
linear discriminant analysis effect size (LEfSe) analysis
Using the default parameters, LEfSe analysis was per-
formed on cancer and paracancerous samples to iden-
tify differentially expressed microbial species that could 
potentially serve as biomarkers. LEfSe significance levels 
were p < 0.05 and LDA > 2.0. Since LEfSe analysis needs to 
input taxa of the species, relevant information for each 
level of taxonomy is required. Species with no taxonomic 
information were deleted in advance and only those with 
complete taxonomic information at each level retained.

Construction and validation of the microbial 
prognostic signature
Univariate Cox regression analysis
Samples of tumors from the TCGA-OV datasets were 
partitioned into two groups, with 50% allocated for train-
ing and the remaining 50% for testing purposes. The R 
packages survival (v3.2-7) and survminer (v0.4.8) were 
employed for batch Cox single-factor regression analysis 
of the abundance values of microbial markers within the 
training dataset. Microbial markers exhibiting a signifi-
cant correlation with OS, as indicated by p < 0.05, were 
selected for further evaluation.

LASSO Cox regression analysis
We conducted additional steps to enhance the dimen-
sionality reduction via LASSO regression of microbial 
markers associated with prognosis. Subsequently a risk-
scoring model was developed for this purpose. The entire 
approach primarily relied on utilization of the R pack-
age glmnet (v4.0-2). To refine the accuracy of the regres-
sion model, we initially performed lambda screening via 
cross-validation. The model associated with the mini-
mum lambda (lambda.min) value was selected, followed 
by extraction of the abundance matrix corresponding 
to the microbial markers selected in the model. Subse-
quently, the risk score for each sample was calculated 
using the formula: Rscorei =

∑n
j=1 abundance ji × βj  

whereby “abundance” represents the content of the spe-
cific microbial marker, “β” the regression coefficient 
(COEF) pertaining to the marker in LASSO regression, 
and “Rscore” the abundance of significantly relevant 
markers in each sample, multiplied by COEF of the corre-
sponding marker, and then summed up. Here, “i” and “j” 
represent the sample and microbial marker, respectively.

To validate the effectiveness of the model, the median 
value of the risk scores from the training set was used as 
the threshold to categorize samples into high- and low-
risk groups. This classification system was combined 
with OS and progression-free interval (PFI) data. Next, 
Kaplan-Meier survival curves were generated and p-val-
ues calculated. A p-value threshold of < 0.05 was utilized 
to distinguish between the high- and low-risk groups. 
Sample risk scores were employed as the prediction 
results of the model and combined with survival data to 
compute the area under the curve (AUC). A time-depen-
dent dynamic receiver operating characteristic (ROC) 
curve was further generated. AUC values for 1-year, 
3-year, and 5-year survival were all greater than 0.6, indi-
cating strong performance of the model. To further con-
firm the robustness of the risk model, we applied it to the 
verification set, calculating risk scores for samples and 
generating Kaplan-Meier and ROC curves for this set.

Table 1  Clinical information on TCGA-OV dataset samples. OS, 
overall survival; GX, Grade could not be assessed
Clinical data of TCGA-OV tumor samples (453)
Age > 65 136

≤ 65 317
Grade G1-2 58

G3-4 384
GX 11

Radiation therapy YES 3
NO 380
NA 70

Clinical stage Stage I-II 31
Stage III 354
Stage IV 65
unknown 3

OS status Alive 178
Dead 263
unknown 12

https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-OV.htseq_fpkm.tsv.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/survival%2FOV_survival.txt
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/survival%2FOV_survival.txt
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/survival%2FOV_survival.txt
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.OV.sampleMap%2FOV_clinicalMatrix
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.OV.sampleMap%2FOV_clinicalMatrix
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.OV.sampleMap%2FOV_clinicalMatrix
http://www.ensembl.org/info/data/ftp/index.html
http://www.ensembl.org/info/data/ftp/index.html
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Nomogram construction
A nomogram was created using the R package rms (v6.1-
0) and survival (v3.2-7) to visualize the results of Cox 
regression. Age, grade, and clinical stage were combined 
with the function cph to construct a Cox proportional 
hazards regression model, followed by the function surv 
to calculate survival probability. Finally, the function 
nomogram was employed for construction of a nomo-
gram object and plot method for display.

Microbial population characteristics and host 
correlations
Correlation analysis and functional enrichment
To investigate the associations between host gene expres-
sion and abundance of characteristic microbial species in 
the model, an expression matrix of protein-coding genes 
was constructed. The correlation pairs with |correlation| 
> 0.2 and p < 0.05 were considered significant and sub-
sequently used to generate a correlation heat map. For 
functional enrichment analysis, we used the clusterPro-
filer package (v4.6.2) in R, which focused on the filtered 
protein-coding genes that were significantly associated 
with microbial markers identified in the model.

Differential display of immune cell infiltration and 
checkpoint expression genes
Differential display of immune cell infiltration was 
achieved using the GSVA R package (v1.34.0) to calculate 
GSVA enrichment scores for 28 types of immune-infil-
trating cells in OSC samples, based on the single-sample 
gene set enrichment analysis (ssGSEA). Data values were 
standardized using the scale function and boxplots com-
paring high- and low-risk groups subsequently generated. 
For analysis of differences in checkpoint gene expression, 
a list of 64 target immune checkpoint (ICP) genes was 
sourced from the existing literature (PMID: 32,814,346) 
[19]. The differences in expression between high- and 
low-risk groups were examined and visualized using box-
plots to display the distribution of datasets.

Results
Study population
A total of 453 samples from the TCGA-OV dataset were 
utilized (136 patients > 65 years and 317 patients ≤ 65 
years). The characteristics of the participants are pre-
sented in Table 1.

Screening and identification of prognosis-related 
microbial markers
Microbiota profiles of human OSC and normal samples
Microbial abundance and information on patients with 
OSC in TGCA (file “Kraken-TCGA-Voom-SNM-Plate-
Center-Filtering-Data.csv” and “Metadata-TCGA-
Kraken-17625-Samples.csv”) were obtained from the 

online repository of Poore et al. [20]. Microbiome 
samples were grouped according to TCGA codes and 
microbial profiling of relative species composition and 
abundance at each taxonomic level, specifically, kingdom, 
phylum, class, order, family, and genus, between normal 
and OSC tissues summarized. A cladogram was gener-
ated using LEfSe to identify major bacteria that could 
serve as microbiological indicators for distinguishing 
patients with OSC. To identify tumor prognosis-related 
characteristics, univariate Cox regression analysis of OS 
was conducted using R package survival (v3.2-7). Sub-
sequently, a prognostic classifier was generated using a 
LASSO Cox regression model based on selected micro-
organisms from these microbial producers. The basic 
design of this study is depicted graphically as a flowchart 
(Fig. 1A). Based on the TCGA ID of the sample, micro-
biomes were merged, and 453 OSC and 68 para-cancer 
samples finally obtained. Microbiota profiles of tumor 
and neighboring non-tumor tissues were compared. 
Next, based on the kingdom, phylum, class, order, family, 
and genus levels, the average value was taken for merg-
ing and the top 20 microorganisms used for display. The 
results showed that the proportions of each grade were 
evenly distributed. Moreover, the difference in microbial 
composition profiles of cancer and paracancerous sam-
ples was not significant (Fig. 1B-G).

LEfSe-based identification of specific microbial markers
Based on LEfSe analysis, a total of 308 microbial mark-
ers with differential abundance were distinguished 
between normal and OSC samples, among which 157 
had higher linear discriminant analysis (LDA) scores in 
the tumor group and the remaining 151 had higher LDA 
values in the normal group. The top 10 relatively abun-
dant microorganisms of each group were selected for 
display (Fig. 2A, Supplementary Table 1). The evolution 
clade diagram indicated an important role of p_Actino-
bacteria phylum in the OSC group and p_Proteobacteria 
phylum in the control group (Fig. 2B). Changes in micro-
bial abundance between OSC and normal tissues were 
detected via computational analysis at the kingdom, phy-
lum, class, order, family, and genus levels, among which 
197 differential species were identified at the genus level.

Construction and validation of a prognostic microbial 
marker signature
Samples were randomly divided into training and testing 
datasets at a ratio of 50:50. The total number of samples 
was 453 (227 in training and 226 in test sets). Based on 
the abundance of 197 genus-level differential micro-
bial markers combined with OS data, single-factor Cox 
regression analysis was performed to screen for micro-
organisms significantly associated with survival. Using 
the correlation threshold, 9 prognosis-related microbial 
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Fig. 1  (A) Flowchart describing the main design of the current study. (B-G) Proportions of microbiota in normal and OSC samples distributed according 
to kingdom, phylum, class, order, family, and genus
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markers were obtained (p < 0.05), of which 5 (g_Magneto-
spirillum, g_Luteimonas, g_Salinisphaera, g_Mitsuokella, 
and g_Erwinia) were identified as risk factors with haz-
ard ratios > 1.0, indicating an association of increased 
abundance with poor prognosis. The hazard ratios of the 
remaining 4 microbial markers (g_Simiduia, g_Halol-
amina, g_Terasakiella, and g_Brachymonas) were < 1.0, 
signifying that reduced microbial abundance was linked 
to poor prognosis in these cases (Fig.  3A, Supplemen-
tary Table 2). Moreover, the above microbial risk factors 
were included in univariate Cox regression analysis. Our 
results showed that g_Mitsuokella (HR, 1.421; 95% CI, 
1.070–1.887; p = 0.041), g_Magnetospirillum (HR, 1.545; 
95% CI, 1.162–2.053; p = 0.012), g_Erwinia (HR, 1.420; 
95% CI, 1.068–1.886; p = 0.043), g_Salinisphaera (HR, 
1.481; 95% CI, 1.113–1.969; p = 0.024) and g_Luteimonas 
(HR, 1.542; 95% CI, 1.161–2.048; p = 0.012) are progno-
sis-risk microbes while g_Halolamina (HR, 0.687; 95% 
CI, 0.516–0.915; p = 0.031), g_Terasakiella (HR, 0.694; 
95% CI, 0.521–0.924; p = 0.036), g_Brachymonas (HR, 
0.697; 95% CI, 0.524–0.927; p = 0.037) and g_Simiduia 
(HR, 0.648; 95%CI, 0.485–0.866; p = 0.014) are prog-
nosis-favorable microbes (Fig.  3B). The top 9 microbes 
(g_Magnetospirillum, g_Luteimonas, g_Salinisphaera, 
g_Mitsuokella, g_Erwinia, g_Simiduia, g_Halolamina, g_
Terasakiella, and g_Brachymonas) were further applied to 
generate a Kaplan-Meier curve (Fig. 3C). The prognostic 

significance of high- and low-abundant microbial mark-
ers supports their clinical value in prediction of OSC.

LASSO Cox regression model of specific microbial markers
We incorporated microbial markers into LASSO Cox 
regression analysis to develop a prognostic model and 
calculated the risk scores. LASSO regression was fur-
ther used to reduce the dimensionality of single-factor 
Cox regression results. Three microbial markers were 
obtained for building a risk scoring model (Risk score = g_
Simiduia * (-0.0711) + g_Halolamina * (-0.0511) + g_
Luteimonas * 0.1634) and sample risk scores calculated 
(Fig.  4A). Patients were separated into high- and low-
risk groups based on median survival times and Kaplan-
Meier curves created after integration of the OS data. 
Survival curves of the two groups were significantly dif-
ferent (p < 0.05), but not the Kaplan-Meier curves based 
on PFI (p = 0.065, Fig. 4B). The sample risk score was fur-
ther used as the prediction result of the model and com-
bined with survival data to calculate area under the curve 
at 1, 3, and 5 years. All AUC values were greater than 
0.6, indicating good predictive ability of the established 
survival prediction risk score model for OSC patients 
(Fig. 4C). The performance of the model was confirmed 
in the validation set and the sample risk scores calculated 
according to the above formula. Based on the risk scores, 
groups were divided into high- and low-risk categories 

Fig. 2  (A) Characteristic microorganisms in normal and OSC samples at several taxonomic levels, as determined based on LDA scores from LEfSe analysis. 
(B) Cladogram showing distinct bacterial taxa in OSC and normal groups (grades to genus level)
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Fig. 3  Univariate Cox regression analysis. (A) Volcano graph display of abundance-based prognostic value of differential microbial markers. (B) Forest 
plot depicting univariate Cox regression analysis of microbial risk variables for OS. (C) Kaplan-Meier curves of patients with OSC generated using the top 
9 microbial communities (based on p-values)
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using the median value as a threshold and Kaplan-Meier 
curves subsequently plotted from OS data. The survival 
curve difference between the two groups was significant 
(p < 0.05), but not the Kaplan-Meier curve based on PFI 
(p = 0.77, Fig.  4D). The sample risk score was utilized 
as the model prediction result, and the model gener-
ated with survival data for 1, 3, and 5 years, with AUC 

values > 0.6 indicating good performance (Fig.  4E). Our 
LASSO Cox regression model of the intratumoral micro-
organism signature performed well on both the training 
and validation sets.

Fig. 4  (A) Plots of ten-fold cross-validation error rates and LASSO coefficient profiles of nine microbial markers for OS against the log (lambda) sequence 
in TCGA-OV. (B, C) Kaplan-Meier and ROC curves of the high- and low-risk categories in the training dataset. (D, E) Kaplan-Meier and ROC curves of the 
high- and low-risk categories in the validation dataset
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Nomogram establishment in conjunction with clinical 
features
The nomogram is a graphical representation of a predic-
tive statistical model for a single patient frequently used 
as a clinical evaluation tool for prognostic assessment 
[21]. The nomogram model was built in the training and 
test datasets using OSC features, such as risk score, age, 
grade, and clinical stage, and used to predict 1-, 3-, and 
5-year OS rates of OSC patients. The results showed that 
the increased values of clinical risk factors (age, grade, 
clinical stage, and risk score) were associated with poor 
prognosis. The risk model offered the most accurate OSC 
prediction (Fig. 5A, B). Time-dependent ROC curve anal-
ysis indicated that the prognostic signature had appropri-
ate accuracy in OS prediction in OSC patients. Moreover, 
AUC values of the test dataset coincided with those of the 
training dataset. Regardless of the training or test dataset, 
the 1-, 3-, and 5-year AUC values were all greater than 
or equal to 0.65, suggesting good discriminatory value 
of the nomogram (Fig.  5C, D). In the training and test 

datasets, the nomogram concordance indexes (C-index) 
were 0.6340 (95% CI 0.6073–0.6608) and 0.6395 (95% CI 
0.6136–0.6654), which were greater than the risk score 
model C-index values of 0.6095 (95% CI 0.5804–0.6386) 
and 0.5937 (95% CI 0.5670–0.6203) respectively (Fig. 5E). 
This finding suggests that the nomogram model of 
microbial biomarkers taking into account clinical factors 
is significantly more effective than a single-index model 
in predicting the prognosis of OSC.

Characteristic microbial populations and host associations
Further statistical analysis of the correlations between 
abundance of microbial markers in the model and 
expression of protein-coding genes in the overall sam-
ple was conducted. Initially, 9,597 protein-coding 
genes were identified. Based on the correlation thresh-
old (|correlation| > 0.2 & p < 0.05), 2,316 combinations 
with significant correlations were obtained, including 
2,057 protein-coding genes. In the correlation heat-
map, g_Luteimonas and g_Halolamina were significantly 

Fig. 5  Development and validation of a prognostic nomogram. (A, B) The training and test datasets of patients with OSC were used to construct the 
prognostic nomogram, allowing for the prediction of 1-year, 3-year, and 5-year OS. (C, D) ROC curves illustrating the performance of the risk model in 
predicting 1-year, 3-year, and 5-year outcomes in both the training and test datasets. (E) The C-index of the nomogram was assessed in both the training 
and test datasets, demonstrating its predictive accuracy

 



Page 10 of 15Qin et al. Journal of Ovarian Research          (2024) 17:140 

positively correlated with the majority of genes and sig-
nificantly negatively correlated with a small number of 
genes, while g_Simiduia was positively correlated with 
almost half of the genes and negatively correlated with 
the other half (Fig.  6A, Supplementary Table 3). Next, 
host gene functional enrichment analysis was performed 
on 2057 protein-coding genes. GO enrichment analysis 
is subdivided into biological process (BP), cellular com-
ponent (CC), and molecular function (MF) components. 
BP-enriched pathways were mainly histone modifica-
tion, cellular component disassembly, and peptidyl-lysine 
modification, CC-enriched pathways mainly mitochon-
dria inner membrane, nuclear speck, and cell-substrate 
junction, and MF-enriched pathways mainly transcrip-
tion coregulator and GTPase regulator activity. KEGG-
enriched pathways predominantly included mechanisms 
of neurodegeneration-multiple diseases, amyotrophic lat-
eral sclerosis, and thermogenesis (Fig. 6B-E).

Clinical features, therapeutic responses, and immune cell 
infiltration of the prognostic microbial signature
Tumor-infiltrating immune cells exert anti-tumor effects 
through direct killing or secretion of cytokines. These 
cells are clearly linked to clinical outcomes and thera-
peutic response in patients with ovarian cancer [22, 23]. 
In this study, we categorized patients into high-risk and 
low-risk groups based on the median values of microbial 
abundance. Subsequently, we conducted GSVA enrich-
ment analysis for both groups and assessed the levels of 
immune cell infiltration. Notably, our analysis revealed 
significant disparities in the immunological scores of 
several immune cell types between the high-risk and 
low-risk groups, as illustrated in Fig.  7. Significantly 
higher scores were obtained for central memory CD8 
T cells, macrophages, mast cells, myeloid-derived sup-
pressor cells (MDSC), monocytes, plasmacytoid den-
dritic cells, regulatory T cells, and T follicular helper 
cells in the high-risk group relative to the low-risk group. 
This finding is particularly intriguing, given the emerg-
ing research showing correlations between immune cell 

Fig. 6  Typical microbial communities and host-microbe relationships. (A) Correlations between host gene expression and microbial species abundance 
in trait models. (B-E) Functional enrichment analysis of associated genes, including BP, CC, MF, and KEGG pathways
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infiltration and OSC. For instance, stromal infiltrating 
mast cells have been identified as potential indicators of 
immunoevasive high-grade serous ovarian cancer cases, 
which are often associated with poorer prognosis and 
limited responsiveness to immunotherapeutic interven-
tions [24]. Moreover, increased numbers of circulating or 
tumor-infiltrating MDSCs are reported in ovarian cancer, 
which are typically linked to poorer prognosis and more 
advanced clinical stages [25].

Differential expression of checkpoint immunotherapy 
marker genes between high-risk and low-risk groups
Expression levels of ICP genes were evaluated in human 
OSC and control tissues in view of the significant roles 
of ICP modulators in cancer immunity, which alter the 
success rates of anticancer treatment [26, 27]. Data on 
the expression patterns of ICPs in high- and low-risk 
groups revealed substantial differences in six target 
genes, including CD209, CD276, CD28, HAVCR2, SIRPA, 
and TNFRSF4, which displayed significantly higher lev-
els in the high-risk group (Fig.  8). Our findings suggest 
that in OSC, prognosis and effects of immunotherapy are 
strongly correlated with ICP expression levels. For exam-
ple, CD276 is upregulated in most tumor tissues and 
belongs to a newly discovered immunoregulatory protein 
family. Moreover, high expression of CD276 is associated 
with poor function of tumor-infiltrating T cells in OC 
[28, 29]. These substantial variations in ICP molecules 

between OSC and normal tissues indicate that abnormal 
ICP expression plays a vital role in the occurrence and 
development of OSC.

Discussion
Accumulating evidence supports potentially significant 
impacts of gut microorganisms on human health, includ-
ing host immunity, and strong associations of intestinal 
microbiota imbalance with the incidence of numerous 
diseases [30, 31]. The intratumoral microbiome is derived 
from the gut and intestinal microbiota can govern 
changes in the abundance of microorganisms in tumors. 
Intestinal microbes infiltrate the tumor site via the cir-
culation, which is a major source of intratumoral micro-
organisms [32]. Intratumor microbiota can influence 
tumor growth through multiple processes such as “host-
microbiota interactions” and play complex roles [33, 34]. 
Tumor bacteria are an essential aspect of the TME that 
are proposed to modify the tumor internal immunologi-
cal microenvironment via increasing cell mutation rates, 
modulating signaling pathways, and promoting inflam-
mation, ultimately influencing carcinogenesis and devel-
opment of malignancy [35–37]. Microbial invasion may 
induce immune cells to engage in defensive immuno-
logical responses. Prolonged inflammation is a risk factor 
and bacterial communication of metabolites plays a cru-
cial role in pathogenesis of ovarian cancer [9, 38]. Several 
studies to date suggest that microflora in ovarian cancer 

Fig. 7  Variations in immunocyte enrichment scores between high-risk and low-risk groups of patients with OSC
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are closely related to tumor development. For example, 
Banerjee et al. [39] demonstrated that the ovarian can-
cer microbiome is distinct from that of adjacent tissue 
using the microarray-based approach, PathoChip, for 
detection of human pathogenic microorganisms. In their 
study, substantial levels of Proteobacteria were detected 
in non-matched control samples of ovarian cancer, con-
sistent with our findings. Furthermore, several bacterial 
species highlighted in their research have been associ-
ated with the prevalence of other diseases, such as lung 
and breast cancer [40, 41]. Among the 9 microorganisms 
related to prognosis in the present study, Mitsuokella 
has been identified as the predominant bacterium of gut 
microbiota in colorectal cancer patients with metastases 
[42]. The abundance of Mitsuokella genera is significantly 
correlated with plasma levels of trimethylamine N-oxide 
(TMAO), which is implicated in promoting carcinogenic 
processes in colorectal cancer through enhancement 
of cell proliferation and angiogenesis [43, 44]. Recent 
advancements in bioinformatics have revealed a role of 
TMAO in exacerbating ovarian and breast cancer patho-
genesis [45]. In this study, we observed an elevated load 
of Mitsuokella in patients with OSC, which was linked 
to unfavorable prognostic outcomes. One hypothesis to 

explain this finding is that Mitsuokella influences ovarian 
cancer development through its metabolic production of 
TMAO, potentially leading to alterations in the intratu-
moral microenvironment. In the oral microbiota, Brachy-
monas prevalence is markedly lower in patients with 
colorectal cancer relative to those with colorectal adeno-
mas [46]. Recent research suggests that Brachymonas 
serve as superior biomarkers with utility in identifying 
the salivary microbiota of healthy volunteers compared to 
individuals with acute pancreatitis [47]. Our results indi-
cate that increased levels of Brachymonas within tumors 
are associated with improved OS in patients with OSC, 
consistent with prior research linking higher Brachymo-
nas levels to less aggressive disease manifestations. The 
collective findings to date underscore the potential pro-
biotic role of Brachymonas. Further investigation into 
the prevalence of Brachymonas in the oral microbiota of 
OSC patients could potentially yield novel insights into 
its therapeutic significance.

The invasion profiles of eight different types of immune 
cells, including central memory CD8 T cells, macro-
phages, mast cells, MDSCs, monocytes, plasmacy-
toid dendritic cells, regulatory T cells, and T follicular 
helper cells, differed considerably between the high- and 

Fig. 8  Variations in the expression of immune checkpoint molecules among high- and low-risk cohorts
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low-risk groups in our study. Blockage of immunologi-
cal checkpoints is a viable technique for increasing anti-
tumor immunity in patients, since ICPs are crucial for 
maintaining self-tolerance and protecting tissues after 
response to infections [48]. According to a recent study, 
mRNA and protein levels of hepatitis A virus cellu-
lar receptor 2 gene (HAVCR2) encoding the potential 
immune-checkpoint target T-cell immunoglobulin mucin 
3 protein are highly upregulated in multiple cancer types, 
including OSC [49]. The cell surface protein, signal regu-
latory protein α (SIRPα), features an extracellular region 
consisting of three immunoglobulin-like domains and 
an intracellular region [50]. Previous research has shown 
that the oncolytic virus SG635-SF, engineered to encode 
the SIRPα-IgG1 Fc gene, effectively reduces the viabil-
ity of the ovarian cancer cell line SK-OV3. Moreover, 
SG635-SF was more effective in suppressing the growth 
of SK-OV3 tumor xenografts through leveraging the 
combined actions of viral oncolysis and CD47 pathway 
inhibition [51]. As the predominant inflammatory ele-
ment within the stroma of numerous tumors, tumor-
associated macrophages (TAMs) influence various 
characteristics of neoplastic tissues. Evidence suggests 
that TAMs exhibit multiple M2-associated protumoral 
functions such as suppressing adaptive immunity [52]. It 
has been demonstrated that the protumoral phenotype 
of TAMs can be mitigated by suppressing the expression 
of M2 phenotype markers, CD163 and CD209, in ovar-
ian cancer A2780 cells [53]. Expression levels of potential 
ICP targets, such as HAVCR2, SIRPA, and CD209, were 
significantly higher in the high-risk than low-risk patient 
group in the current study, implying that differences in 
intratumoral bacteria in ovarian cancer are related to the 
sensitivity of patients receiving immunotherapy. As an 
important part of the TME, the intratumor microbiome 
influences the biological behavior of tumors and specific 
microbial compositions promote progression of disease. 
Here, we explored the associations between microbiota 
and OSC at the microbiological level, providing ground-
work for future research on ovarian cancer. The collective 
findings indicate that the tumor microbiome has signifi-
cance for clinical prognosis of OSC and provide valuable 
insights that could aid in the development of strategies 
for prevention, diagnosis, and treatment of tumors.

Our research addresses novel questions regarding the 
direct impact of intratumoral microbiota on OSC prog-
nosis and treatment outcomes, specifically in the context 
of immunotherapy. Through comprehensive analysis of 
the microbial contents of cancerous and adjacent non-
cancerous tissue, we challenge the prevailing hypoth-
esis that cancer dynamics is primarily influenced by gut 
microbiota. The collective findings suggest that intratu-
moral microbes play a critical role, which may lead to 
the development of innovative therapeutic strategies 

that target these microbial communities to modulate 
the TME and enhance immunotherapeutic efficacy. This 
study significantly advances our understanding of role of 
the microbiome in OSC by establishing that intratumoral 
microbiota are not merely passive inhabitants but active 
participants in cancer progression and patient survival. 
Determination of the correlations of specific microbial 
profiles with survival rates and immune responses pro-
vides valuable insights into the potential mechanisms 
through which these microbes influence the TME. Over-
all, this could create new opportunities for the develop-
ment of microbiome-based diagnostics and therapies 
that potentially revolutionize the management of ovarian 
cancer by facilitating more tailored treatment strategies.

The current research presents a unique approach to 
understanding the process of OSC through integration 
of intratumoral microbiome profiling with clinical prog-
nosis indicators. Distinct from previous studies, which 
primarily focused on the broad impact of microbiota on 
immune responses within the TME [16], we constructed 
a prognostic risk score model based on microbial abun-
dance in OSC samples from the TCGA database and 
explored the prognostic significance of specific microbial 
populations and their direct associations with survival 
outcomes in OSC. Specific microbial signatures that were 
significantly correlated with patient survival and immune 
response modulation were identified. This technique not 
only refines the predictive accuracy for OSC prognosis 
but also integrates microbial profiles directly from tumor 
samples, offering a groundbreaking perspective in the 
realm of cancer biomarkers. The database utilized in our 
study primarily permits analysis at the genus level. While 
this limitation restricts our ability to investigate species-
specific relationships, the genus-level data nevertheless 
provide valuable insights into microbial associations with 
OSC. The resolution supports the identification of micro-
bial signatures correlated with patient outcomes and 
immune responses, contributing to our understanding of 
the role of the tumor microbiome in modulating disease 
progression and treatment efficacy. Our findings estab-
lish the prognostic value of microbial profiles in OSC 
and their potential significance in disease prognosis and 
treatment efficacy. Building on these results, isolation of 
the microbial species identified and in vivo experiments 
should further validate their functions and interactions 
with the host immune system. These systematic studies 
will be crucial for confirming the clinical relevance of 
specific microbial biomarkers and their therapeutic tar-
geting potential, with the ultimate goal of advancing per-
sonalized treatment plans tailored to individual patients.
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