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Abstract 

Background The five‑year prognosis for patients with late‑stage high‑grade serous carcinoma (HGSC) remains dis‑
mal, underscoring the critical need for identifying early‑stage biomarkers. This study explores the potential of extracel‑
lular vesicles (EVs) circulating in blood, which are believed to harbor proteomic cargo reflective of the HGSC microen‑
vironment, as a source for biomarker discovery.

Results We conducted a comprehensive proteomic profiling of EVs isolated from blood plasma, ascites, and cell 
lines of patients, employing both data‑dependent (DDA) and data‑independent acquisition (DIA) methods to con‑
struct a spectral library tailored for targeted proteomics. Our investigation aimed at uncovering novel biomarkers 
for the early detection of HGSC by comparing the proteomic signatures of EVs from women with HGSC to those 
with benign gynecological conditions. The initial cohort, comprising 19 donors, utilized DDA proteomics for spectral 
library development. The subsequent cohort, involving 30 HGSC patients and 30 control subjects, employed DIA 
proteomics for a similar purpose. Support vector machine (SVM) classification was applied in both cohorts to identify 
combinatorial biomarkers with high specificity and sensitivity (ROC‑AUC > 0.90). Notably, MUC1 emerged as a signifi‑
cant biomarker in both cohorts when used in combination with additional biomarkers. Validation through an ELISA 
assay on a subset of benign (n = 18), Stage I (n = 9), and stage II (n = 9) plasma samples corroborated the diagnostic 
utility of MUC1 in the early‑stage detection of HGSC.

Conclusions This study highlights the value of EV‑based proteomic analysis in the discovery of combinatorial bio‑
markers for early ovarian cancer detection.
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Introduction
Despite an increasing understanding of epithelial ovar-
ian cancer (EOC) etiology and biology, EOC remains the 
most lethal gynecological cancer in developed countries 
[1]. Globally, approximately 200,000 women are diag-
nosed per year, with a 5-year survival rate that remains 
below 50% [2]. Early detection of HGSC is crucial to 
improving outcomes, with 92% of patients surviving fol-
lowing early-stage detection, versus only 29% in late-
stage cases. Unfortunately, 75% of women experience 
non-specific symptoms (e.g. abdominal discomfort) and 
are not diagnosed until the disease has progressed to 
stage 3 and beyond. In many cases these non-specific 
symptoms lead to the identification of pelvic masses by 
transvaginal ultrasound (TVUS) imaging. If abnormal 
masses are identified, invasive surgical procedures, tis-
sue debulking, and pathohistological analyses are then 
required to discriminate between benign and malignant 
disease. High-grade serous carcinoma (HGSC) is the 
most lethal and aggressive form of epithelial ovarian can-
cer, accounting for > 75% of EOC cases. The extracellular 
epitope of MUC16 (CA-125) can be used to monitor the 
progression of EOC and response to chemotherapeu-
tics in combination with TVUS [3, 4]. Unfortunately, 
tests for CA-125 are not sensitive nor specific enough 
for early diagnosis of malignant EOC [3]. For example, 
although ~ 20% of patients with late-stage EOC exhibited 
elevated CA-125 levels (> 35 U/mL), increased CA-125 
was also observed in women with alternative gynecologi-
cal conditions [5, 6]. Thus, there remains a dire need to 
discover alternative biomarkers to aid in the early detec-
tion of HGSC.

Algorithms, such as the Risk of Malignancy Index 
(RMI), aim to incorporate menopausal status, CA-125 
levels and TVUS imaging. Alternatively, the Risk of 
Ovarian Cancer Algorithm (ROCA) monitors CA-125 
levels over time to assess the risk of developing ovarian 
cancer. Unfortunately, large, randomized control tri-
als (US Prostate, Lung, Colorectal and Ovarian Cancer 
Screening Trial and UK Collaborative Trial of Ovarian 
Cancer Screening) involving thousands of women found 
no significant survival benefit for multimodal screening 
strategies over standard of care [5, 6]. Alternative bio-
markers to CA-125 have been proposed for estimating 
HGSC risk. For example, the risk of ovarian malignancy 
algorithm (ROMA) monitors human epididymis pro-
tein 4 (HE4 or WFDC2) in addition to CA-125 [6]. The 
FDA-approved OVA1 in  vitro diagnostic multivariate 
index assay measures five biomarkers (CA-125, transfer-
rin [TF], transthyretin (prealbumin), apolipoprotein A1 
[APOA1], and beta-2 microglobulin [B2M]) and demon-
strates improved prediction accuracy of malignancy risk 
compared to a physician’s pre-operative assessment or 

CA-125 alone [7]. Yip et al. screened 259 serum biomark-
ers from HGSC patients and identified nine combinato-
rial biomarkers with greater specificity than OVA1 (88.9 
versus 63.4%) [8]. Høgdall et al. screened serum from 150 
HGSC patients and found B2M, TF, and ITIH4 robustly 
predicted overall survival and progression-free survival 
[9]. Improving the sensitivity and specificity of OVA1, 
a second generation multivariate index (Overa) has 
been FDA-approved to provide risk assessment scores 
in women with adnexal masses [10]. These approaches 
improve cancer classification and monitoring strategies; 
however, viable biomarkers that can detect early-stage 
HGSC are still unavailable.

Blood plasma remains an ideal source for biomarker 
discovery due to the easy acquisition of patient samples 
for high-throughput immunoassays. Mass spectrom-
etry (MS)-based proteomics is a medium-throughput 
technique for biomarker discovery; however, the detec-
tion of low abundance proteins in plasma is technically 
complicated by the presence of high abundance pro-
teins (HAPs) [11–15]. Keshishian et  al. detected ~ 5300 
plasma proteins by depleting the 14 most abundant 
plasma proteins as well as ~ 50 moderately abundant 
proteins in tandem with peptide fractionation. Alterna-
tively, N-glycopeptide enrichment can be used to iden-
tify plasma proteins relevant to ovarian cancer relapse 
[16]. It remains to be determined what the optimal strat-
egy is for segregating biomarkers from HAP in primary 
tissue samples. Extracellular vesicles (EVs), 30-1000 nm 
in diameter, carry bioactive lipid, nucleic acid and pro-
teomic cargo in a lipid membrane that allows for trans-
port through systemic circulation to distant tissues [17]. 
EVs carry bioactive cargo from or towards a metastatic 
cancer microenvironment [18], thus enrichment of EVs 
may segregate potential biomarkers from HAPs or other 
liable proteins [19]. A limited number of investigations 
have attempted to characterize HGSC-EV proteomes 
using EVs from biofluids [20].

In our investigation, we adopted a two-pronged 
approach, utilizing both data-dependent acquisition 
(DDA) and data-independent acquisition (DIA) prot-
eomics, to meticulously profile the proteome of extra-
cellular vesicles (EVs) derived from two distinct cohorts. 
The first cohort, comprising 9–10 donors, focused on 
building a spectral library through DDA proteomics for 
targeted analysis. In contrast, the second cohort, involv-
ing 30 patients with HGSC and 30 control subjects, lever-
aged DIA proteomics for the same purpose. Our analysis 
utilized support vector machine (SVM) classification to 
discern potential biomarkers, leading to the identification 
of MUC1 as a valuable combinatorial biomarker across 
both cohorts. The diagnostic potential of MUC1 was 
assessed using ELISA quantification. This comprehensive 
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approach highlights the efficacy of targeted proteomics 
and underscores the significance of MUC1 as a biomarker 
in the early detection of high-grade serous carcinoma.

Methodology and data analysis
Cell culture
OV-90 (ATCC® CRL-11732) and NIH:OVCAR3 (ATCC® 
HTB-161) were obtained from the ATCC. Human 
immortalized surface epithelial cells hIOSE (OSE364) 
were obtained from the Canadian Ovarian Tissue Bank 
at the BC Cancer Agency and kindly provided by Dr. 
Ronny Drapkin (Department of Obstetrics and Gyne-
cology, University of Pennsylvania). Primary cell lines 
EOC6 and EOC18 were isolated and established by 
Dr. Yangxin Fu from the ascites of patients with high-
grade and low-grade serous ovarian cancer, respectively 
[21]. All cell lines, except OVCAR3, were maintained 
in M199 + MCDB105 supplemented with 5–15% FBS. 
NIH:OVCAR3 cells were cultured in RPMI-1640 supple-
mented with 20% FBS and 5  µg/mL insulin. Media was 
exchanged with serum free media for 20–30 h to gener-
ate conditioned media (CM) for EV purification. All work 
involving the use of patient samples (cell lines, plasma 
and ascites) was approved by the Health Research Ethics 
Board of Alberta-Cancer Committee.

Ascites fluid
Institutional approval for research with human mate-
rials was received prior to the initiation of these stud-
ies (Health Research Ethics Board of Alberta-Cancer 
Committee, HREBA.CC-17–0450), and samples were 
obtained after receiving informed consent. Briefly, ascites 
fluid aspirates were depleted of cells and cellular debris 
through serial centrifugation at 300  g for 10  min and 
1000 g for 10 min, respectively. 1 mL of cell-free ascites 
fluid was used for each EV isolation. Ascites fluid was 
stored at -80C.

Blood plasma
Blood plasma was collected from treatment naïve-
women with HGSC or benign gyneological disease at the 
University of Alberta after receiving informed consent. 
Additional plasma samples from women with early-stage 
(I/II) HGSC or non-cancerous gynecological ailments 
were obtained from the Banque Cancer de l’ovaire, Cen-
tre de recherche du CHUM (CRCHUM), in Montréal, 
Québéc, Canada. Plasma samples were collected between 
the years of 2009–2021 from individuals diagnosed 
with HGSC and before any treatment (chemotherapy or 
radiotherapy). Plasma from women with HGSC (n = 30) 
or age-matched controls with benign gynecological ail-
ments (n = 30). Plasma was stored at -80 °C prior to 
experimentation.

Ultracentrifugation (UC)
20 mL of CM, 1 mL of plasma and 1 mL of ascites fluid 
were first centrifuged at 200–300 × g at 4  °C to pellet 
cells. Supernatants were diluted 1:10 in PBS (except CM) 
and centrifuged at 3,000 × g for 20 min at 4 °C to remove 
cell debris. To remove large membrane fragments, super-
natants were spun at 10,000 × g for an additional 20 min 
at 4  °C. Lastly, supernatants were ultracentrifuged at 
120,000 to 140,000 × g (SW-28 rotor) for 2  h at 4  °C to 
pellet EVs on an OptimaTM L-100 XP ultracentrifuge 
(Beckman Coulter). The supernatant was removed and 
EVs were resuspended in 100-300µL of PBS and stored at 
-80 °C until further use.

CD9‑affinity Purification (CD9AP)
Hydrophilic streptavidin magnetic beads (120  mg) were 
washed three times with PBS then resuspended in 5 mL 
PBS (New England Biosystems, S1421S, 20  mg/5  ml). 
Beads were mixed with 650  µg biotin conjugated anti-
CD9 antibody (Abcam, ab28094) at room temperature 
for 30  min and then washed twice with PBS to remove 
unbound antibody. Beads were resuspended in 6 mL PBS 
and 1 mL (~ 20 mg) was added to 10 mL plasma or ascites 
(diluted 1:1 in PBS). Samples were placed on a rotary 
mixer overnight at 4  °C and then rinsed three times 
with PBS. EVs were eluted from beads with three-500 µl 
glycine–HCl (0.1  M, pH 2.39) washes. A small volume 
(75µL) of Tris–HCl (1.8 M, pH 8.54) was used to neutral-
ize each eluent.

Size Exclusion Chromatography (SEC)
200  µl of benign, or HGSC plasma was loaded onto an 
Izon 70  nm Gen2 column, according to manufactur-
er’s instructions. Following three 1.5  mL washes with 
PBS, ~ 200  µl of plasma was loaded on the column and 
allowed to enter the column for 5 min. Next, 2.0 mL of 
PBS is loaded into the column and eluent is disposed of 
until flow from the column is stopped. Finally, 1.5  mL 
of PBS containing 2.5  mM trehalose was added to SEC 
columns and up to 1.2 mL was collected and considered 
EV-enriched. Aliquots were stored at -80 °C until experi-
mental use.

Western blotting
EVs were lysed in RIPA buffer. 10 µg protein was loaded 
onto a 10% SDS-PAGE gel under reducing conditions. 
Proteins were transferred to PVDF and the membranes 
were blocked with LI-COR Intercept Blocking solution. 
Membranes were incubated with anti-CD9 rabbit anti-
body [CD9 (D8O1A) Rabbit mAb, Cell signaling Tech; 
#13174S, dilution 1:2000] and an anti-actin mouse anti-
body [Anti-β-Actin Antibody (C4), Santa Cruz Biotech, 
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sc-47778, dilution 1:1000] overnight at 4 °C. Membranes 
were washed then incubated with IRDye 800CW donkey 
anti-rabbit (LI-COR# 926–32,213, dilution 1:20,000) and 
IRDye-680RD donkey anti-mouse (LI-COR# 926–68,072, 
dilution 1:20,000) for 1  h at room temperature. Mem-
branes were then scanned with the Odyssey Infrared 
Imager (LI-COR).

Nanoparticle tracking analysis
Samples were diluted 25-fold using filtered 0.2 × phos-
phate buffered saline and then were analyzed using the 
Nanosight LM10 (405 nm laser, 60mW, software version 
3.00064). Samples were analyzed for 60  s (count range 
of 20–100 particles per frame). All measurements were 
done in triplicate. Alternatively, NTA performed on a 
ZetaView (Particle Metrix), as previously described [22].

Atomic force microscopy
The EVs were analyzed and characterized by atomic force 
microscopy (AFM). For the preparation of the samples, 
the isolated EVs were diluted at 1:20 in ultrapure water 
and AFM measurements were performed in a BioScope 
Catalyst atomic force microscope (Bruker), as previously 
reported [22].

EV protein extraction and digestion
To prepare EVs for LC–MS/MS, ~ 25  μg protein quan-
tified by BCA were lyophilized to dryness and recon-
stituted in 8  M Urea, 50  mM ammonium bicarbonate 
(ABC), 10 mM dithiothreitol (DTT), 2% SDS lysis buffer. 
EV proteins were sonicated with a probe sonicator (3 X 
0.5  s pulses; Level 1) (Fisher Scientific, Waltham, MA), 
reduced in 10 mM DTT for 30 min at room temperature 
(RT), alkylated in 100 mM iodoacetamide for 30 min at 
RT in the dark, and precipitated in chloroform/methanol. 
On-pellet in-solution protein digestion was performed in 
100µL 50 mM ABC (pH 8) by adding Trypsin/LysC (Pro-
mega, 1:50 ratio) to precipitated EV proteins. EV proteins 
were incubated at 37 °C overnight (~ 18 h) in a Thermo-
Mixer C (Eppendorf ) at 300 rpm. An additional volume 
of trypsin (Promega, 1:100 ratio) was added for ~ 4  h 
before acidifying to pH 3–4 with 10% FA.

SCX peptide fractionation and LC–MS/MS
Tryptic peptides were fractionated using strong cation 
exchange (SCX) StageTips. Briefly, peptides were acidi-
fied with 1% TFA and loaded onto a pre-rinsed 12-plug 
SCX StageTips (Empore™ Supelco, Bellefonte, PA, USA). 
In total, 6 SCX fractions were collected by eluting in 75, 
125, 200, 250, 300 mM ammonium acetate/20% ACN fol-
lowed by a final elution in 5% ammonium hydroxide/80% 
ACN. SCX fractions were dried in a SpeedVac (Ther-
moFisher), re-suspended in ddH2O, and dried again to 

evaporate residual ammonium acetate. All samples were 
re-suspended in 0.1% FA prior to LC–MS analysis.

SCX fractions were analyzed using a nanoAquity 
UHPLC M-class system (Waters) connected to a Q 
Exactive mass spectrometer (Thermo Scientific) using 
a nonlinear gradient. Buffer A consisted of water/0.1% 
FA and Buffer B consisted of ACN/0.1%FA. Peptides 
(~ 1  µg estimated by BCA) were initially loaded onto an 
ACQUITY UPLC M-Class Symmetry C18 Trap Column, 
5 µm, 180 µm × 20 mm and trapped for 4 min at a flow rate 
of 5  µl/min at 99% A/1% B. Peptides were separated on 
an ACQUITY UPLC M-Class Peptide BEH C18 Column 
(130 Å, 1.7 µm, 75 µm X 250 mm) operating at a flow rate 
of 300 nL/min at 35 °C using a non-linear gradient consist-
ing of 1–7% B over 3.5 min, 7–19% B over 86.5 min and 
19–30% B over 30  min before increasing to 95% B and 
washing. Settings for data acquisition on the Q Exactive 
and Q Exactive Plus are outlined in Supplemental Table 1.

SCX‑DDA data analysis
MS raw files were searched in MaxQuant (1.5.2.8) using 
the Human Uniprot database (reviewed only, updated 
May 2014 with 40,550 entries). Missed cleavages were set 
to 3 and I = L. Cysteine carbamidomethylation was set as a 
fixed modification. Oxidation (M), N-terminal acetylation 
(protein), and deamidation (NQ) were set as variable mod-
ifications (max. number of modifications per peptide = 5) 
and all other setting were left as default. Precursor mass 
deviation was left at 20 ppm and 4.5 ppm for first and main 
search, respectively. Fragment mass deviation was left at 
20 ppm. Protein and peptide FDR was set to 0.01 (1%) and 
the decoy database was set to revert. The match-between-
runs feature was utilized across all sample types to maxi-
mize proteome coverage and quantitation. Datasets were 
loaded into Perseus (1.6.14) and proteins identified by site; 
reverse and potential contaminants were removed47. Pro-
tein identifications with quantitative values in > 50% sam-
ples in each group (cells, plasma or ascites) were retained 
for downstream analysis unless specified elsewhere. Miss-
ing values were imputed using a width of 0.3 and down 
shift of 1.8 to enable statistical comparisons.

Label‑free parallel reaction monitoring (PRM)
To generate spectral data for biomarker candidate (pep-
tides), several unfractionated plasma EV digests (~ 1  µg/
sample) were initially analyzed on a Q Exactive Plus using a 
non-linear 2.5 h gradient consisting of 1–7% B over 1 min, 
7–23% B over 134 min and 23–35% B over 45 min before 
increasing to 95% B and washing. Raw files were searched 
against the human Uniprot databased (20, 274 entries) 
using the de novo search engine PEAKS® (version 8). Par-
ent and fragment mass error tolerances were set to 20 ppm 
and 0.05 Da, respectively. Maximum missed cleavages were 
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set to 3 and 1 non-specific cleavage was allowed. Carbami-
domethylation was set as a fixed modification, and deami-
dation, oxidation and acetylation (protein N-term) were 
included as variable modifications with a maximum of 3 
PTMs per peptide allowed. pepXML peptide informa-
tion and mzXML spectral data were next exported from 
PEAKS® generate a PRM method in Skyline [23]. Pep-
tides with missed cleavages or containing tryptophan were 
removed and up to 3 peptides/protein, 7–18 amino acids 
in length, were chosen for monitoring. In Skyline, the top 5 
most intense transitions (b and y ions) were used for quan-
tification and an 8-min window was chosen to account for 
deviations in chromatography and minimize the chance of 
truncation while maximizing the number of MS/MS scans. 
EV and EV-depleted samples were subsequently analysed 
using the same gradient but with a targeted PRM method 
in a randomized fashion. A minimum of 3 transitions were 
required to measure peak areas, and targets with dotp 
scores < 0.8 or ppm exceeding 20 were assumed to contain 
interference and initially assigned a peak area of 0. To cor-
rect for sample loading and technical variability, peak areas 
for each peptide were normalized to the total ion current 
(TIC). Peak areas were additionally normalized to the CD9 
peptide EVQEFYK (extracellular region, AAs 120–126) to 
correct for EV recovery. Normalized peak areas of 0 were 
assumed to be missing not at random and imputed with the 
lowest ratio detected for the given peptide.

Gas phase fractionation data independent LC–MS/MS 
(GPF‑DIA)
For spectral library generation, 1 µg of plasma EV digest 
was serially injected to produce 100 m/z fractions across 
300-1000 m/z using a staggered window scheme of 4 m/z 
wide windows that produce 2 m/z bins after demultiplex-
ing, as previously described [24]. 1ug of EV digests from 
individual donors were analyzed by staggered 24  m/z 
wide windows that produce 12 bins after demultiplexing. 
Raw files were converted to mzML using ProteoWizard 
with PeakPicking = 1, Demultiplex = 10 ppm and ZeroSa-
mples = -1. Library and sample mzML files were searched 
together using DIA-NN to generate a spectral library by 
allowing 2 missed cleavages and 1 variable modification 
of Oxidation. Settings for data acquisition on the Eclipse 
are outlined in Supplemental Table 2.

Dynamic retention time PRM
Our spectral data library produced by GPF-DIA and DIA-
NN contained > 1800 proteins with a unique peptide. 
Peptide candidates were selected in Skyline (v23.0.9) by 
filtering for precursors with CV < 30% and minimum prod-
uct ions of 3. We allowed up to 3 unique peptides per pro-
tein to increase the confidence of biomarker detection. EV 
digests from the early-stage donors cohort were analyzed 
using real-time retention time calibrated PRM. Samples 
were spiked with 50fmol of Pierce Retention Time Cali-
bration (PRTC; ThermoFisher Scientific) mix that allowed 
for the curation of retention time windows of 3-min and 
selection of peptides with a correlation > 0.95 between 
observation and predicted iRT. Furthermore, we employed 
the “Dynamic Retention Time” feature in XCalibur soft-
ware to monitor chromatography shifts in PRTC peptides 
that allow for real-time correction of downstream PRM 
windows. In Skyline, the top 8 most intense transitions (b 
and y ions) were used for quantification. A minimum of 3 
transitions were required to measure peak areas, and tar-
gets with dotp scores < 0.4 were assumed to contain inter-
ference and initially assigned a peak area of 0. To correct 
for sample loading and technical variability, peak areas for 
each peptide were normalized to the TIC and corrected 
for RT shifts using PRTC. Normalized peak areas of 0 were 
assumed to be missing not at random and imputed with 
the lowest ratio detected for the given peptide.

Detection of CA15‑3 antigen using ELISA
Plasma samples were diluted twofold using ddH20 prior 
to a 30-fold dilution using Dilutent A of the commercial 
ELISA kit (ThermoFisher Scientific). A standard curve 
ranging from 1000 U/mL to 4.1 U/mL was used to deter-
mine the concentration of MUC1/CA15-3 by analyzing 
HRP at 450  nm and 570  nm for background correction 
using a Cytation (v3.11.19).

Machine learning and statistical analyses
Differential protein abundance between conditions were 
determined using a two-tailed Welch’s t-test (p < 0.05) in 
Perseus (version 1.6.14). Graphing was performed using 
Python or Prism version 6.01 (GraphPad Software, San 
Diego, CA). Mann–Whitney rank sum statistical tests 
were calculated in R (version 3.60) or Python (version 

(See figure on next page.)
Fig. 1 Proteomic Profiling of Extracellular Vesicles Isolated from Ovarian Cancer Cell Lines. EVs were enriched using UC from conditioned media 
of established (hIOSE, OV‑90, OVCAR3) or primary cell lines established from ascites (EOC6 and EOC18). EV proteomes were characterized using 
UPLC‑MS/MS using SCX‑DDA. A The number of unique proteins identified was elevated in EVs derived from established cell lines compared 
to primary cell lines. B Venn diagram demonstrating distribution of shared and unique proteins across cell lines. 2150 proteins were identified in EVs 
from all cell lines. C Principal component analysis illustrating distinct proteomic ‘fingerprints’ within cell line‑derived EVs D Overlap of EV‑proteomes 
compared to Vesiclepedia database filtered for ovarian cancer cell lines. E Heatmap of Reactome terms significantly associated with EV proteomes 
common between cell lines
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Fig. 1 (See legend on previous page.)
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3.10). Data handling and machine learning optimization 
pipelines were built in Python (version 3.10). Pathway and 
annotation enrichment analyses were performed using 
Metascape (metascape.org) using the default settings. Vesi-
clepedia gene lists for ascites, ovarian cancer, and plasma 
were obtained using FunRich Software (version 3.1.4).

Results
Integrative proteomic analysis of ovarian cancer 
extracellular vesicles
We took a systematic approach to generate libraries of 
EV proteins for targeted MS analysis and prospective bio-
marker discovery of early-stage HGSC. We began with cells 
to model primary tumours, ascites to mimic the tumour 
microenvironment and finally plasma as a clinically applica-
tion of diagnostic biomarkers. Accordingly, EV proteomes 
from cancer cell lines, plasma, and ascites fluid were char-
acterized by MS/MS. Established (OVCAR3, OV-90) cell 
lines were used to model HGSC, and a non-malignant 
ovarian surface epithelial cell line (hIOSE) was also ana-
lysed. Cell lines derived from ascites fluid of patients with 
low-grade serous (EOC18) and high-grade (EOC6) ovarian 
cancer and were also used to reflect a component of the EV 
proteome generated within an ascites microenvironment. 
EVs were primarily obtained by UC; however, CD9 affinity 
purification (CD9AP) was also performed on plasma and 
ascites to enrich for a subset of EVs (Fig.  1A, S1A). SCX 
peptide fractionation was employed to increase proteomic 
depth prior to LC–MS/MS; in return, > 8000 proteins were 
identified in total. Similar to proteomic analyses of ovarian 
cancer cell lysates [25] and Raman spectroscopy characteri-
zation [26], cell line derived EVs harboured unique cargo 
compared to each other but primary and established cell 
lines (including hIOSE) clustered along principal compo-
nents (Fig. 1B-C, Fig S1B). Importantly, the proteomes of 
all samples were significantly associated with GO Cellular 
Component (GOCC) annotations indicative of EV-enrich-
ment (Fig S1C). Cell EV proteomes displayed a 35–45% 
overlap with Vesiclepedia filtered for EOC cell lines and 
65% overlap with Vesiclepedia filtered for ascites fluid 
(Fig.  1D, S1D). Proteomes of cell EVs contained 38–58% 
of proteins identified within ascites EVs isolated by UC; 

however, > 84% of proteins detected in ascites EVs were 
identified across the cell EV proteome (Fig S1E). Com-
pared to UC, CD9AP provided a modest increase in shared 
proteome coverage between cells and biofluids (Fig S1F). 
Common proteins were associated with neutrophil degran-
ulation and adaptive immunity (Fig.  1E). 2121 proteins 
detected in cell EVs overlapped with ascites EVs and were 
associated with adaptive immunity and members of the 
PDGFB, CXCR and VEGF signalling pathways (Fig S1G). 
These results support the speculation that the proteomic 
‘fingerprint’ of cell EVs may reflect a cross-section of EVs 
produced within a tumour microenvironment.

CD9AP increases EV specificity in ascites samples 
at the expense of proteomic depth
EVs represent a large range of biological vesicles that may 
reflect anything from ‘cellular debris’ during apoptotic 
processes to systematically packaged messages facilitat-
ing cancer metastasis [18]. With these properties in mind, 
we hypothesized that increasing EV purity would uncover 
additional biomarkers undetected within UC-enriched EV 
preparations, in return increasing the pool of prospective 
biomarkers for targeted analysis. We selected CD9 affin-
ity purification (AP) to increase the enrichment of exo-
some and ectosomes while depleting large EVs, apoptotic 
bodies, and liable protein co-isolated with UC. Indeed, 
smaller EVs were captured with CDAP compared to UC 
(Fig. 2A, Table S3); however, this occurred at the expense 
of proteomic depth (Fig. 2B, C). 145 proteins were exclu-
sively detected in CD9AP-EVs and were enriched with 
effectors of blood vessel and cancer development, such as 
TGFB1, BMP2, VEGFC and WNT11. Of note, only PARP1 
in CD9AP-EVs overlapped with Vesiclepedia-Ascites (Fig 
S2A). On the other hand, > 1900 additional proteins were 
exclusively detected using UC of which 1398 proteins were 
previously unreported in ascites EVs proteomes (Fig.  2D, 
Fig S2A). 416 proteins were common between isolation 
methods and were enriched with mediators of adaptive 
and innate immunity (Fig S2B). Quantitative analysis in 
paired ascites samples identified 150 of these proteins were 
detected at different levels (Fig. 2E), such as angiopoietin-
like 6 (ANGPTL6) and myosin heavy chain-9 (MYH9). 

Fig. 2 Proteomic Comparison of Ultracentrifugation versus CD9 Affinity purification for Isolation of Plasma or Ascites Extracellular Vesicles. A 
Nanoparticle tracking analysis of ascites EVs purified by UC or CD9AP demonstrates a subset of EVs are enriched by CD9AP. The distribution 
of CD9AP‑EVs were primarily distributed around < 150 nm in diameter, whereas UC samples were comprised of a heterogenous mixture of EVs 
that were primarily distributed around ~ 200 nm, albeit subpopulations of EVs were detectable up to 900 nm (see Table S3). B Heatmap of identified 
proteins and dendrogram demonstrate increased proteomic depth obtained by UC compared to CD9AP using paired ascites donors. C Cellular 
debris and large EV components, such as actin, were depleted using CD9AP. D 145 and 1953 proteins were exclusive to EVs enriched by CD9AP 
or UC (> 1 replicate), whereas 416 proteins were common to both CD9AP and UC‑enriched EVs (> 2 replicates in each condition). E Volcano plot 
of common proteins to CD9AP and UC identified 64 and 84 proteins significantly enriched in either CD9AP‑ or UC‑enriched ascites EVs, respectively. 
F 185 proteins were significant enriched within ascites EVs compared to blood plasma EVs collected by UC from healthy donors. G 55 proteins were 
significantly enriched using CD9AP on ascites EVs compared to blood plasma EVs collected from healthy donors

(See figure on next page.)
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Although both UC- and CD9AP-EVs contain proteins asso-
ciated with EV biology, several ‘classical’ EV markers (i.e. 
CD63) were exclusive to UC-EVs (Fig S2C,D). These results 
were not surprising considering patterns of CD9 and C63 
localization represents distinct mechanisms of EV biogen-
esis [27]. Integrins facilitate EV uptake into recipient cells 
and 9 out of 11 detected integrins were exclusively detected 
in UC-EVs, supporting the enrichment of EVs primarily 
derived from the plasma membrane. This data supports 
previous reports that increased EV purity with CD9AP can 
increase the number of prospective biomarkers [28].

Quantitative proteomics unveils a large reservoir 
of putative biomarkers in biofluids
We considered the proteomic cargo of ascites EVs a reflec-
tion of the tumour microenvironment and speculated that 
a subset of the ascites EV proteome would also be detected 
within systemic circulation. Thus, proteins exclusively 
detected in ascites EVs or enriched in ascites EVs relative 
to plasma EVs were considered prospective biomarkers. If 
absent in healthy controls, these proteins may be specifically 
detected in early-stage HGSC patients even when tumor 
burden is low. Accordingly, we employed parallel purifi-
cation strategies, UC and CD9AP, to increase proteomic 
depth for biomarker discovery. MS/MS identified proteins 
enriched in ascites EVs compared to plasma EVs regardless 
of EV isolation methodology. In the UC group, 185 pro-
teins were significantly elevated (twofold, p < 0.05) in ascites 
compared to healthy plasma (Fig. 2F). These included pro-
teins associated with cancer cell biology and/or metastasis, 
such as LRP1, and MUC1. On the other hand, 105 differ-
entially expressed proteins (twofold, p < 0.05) were detected 
between healthy plasma and ascites using CD9AP (Fig. 2G). 
These included cancer-relevant proteins such as MMP14 
and CD14. Next, we sought to determine whether ascites-
specific EV proteins could also be detected in the plasma 
of HGSC patients. Over 200 proteins that were enriched 
within ascites were also detected in plasma samples from 
donors with HGSC and included mediators of immune 
response and regulated exocytosis (Fig S2C, E). These pro-
teins were considered as prospective biomarkers during 

PRM method development. HE4 was not detected in our 
study, which suggested potential EV-independence, similar 
to that reported in Zhao et al29. Collectively, these results 
support the parallel application of UC and CD9AP to ‘mine’ 
prospective biomarkers; moreover, confirm that ascites may 
be a resourceful biofluid for early biomarker discovery.

Targeted proteomics of plasma EVs and support vector 
machines identified several biomarker combinations 
for the early detection of HGSC
A considerable number of proteins enriched in ascites EVs 
relative the healthy plasma EVs were detectable in plasma 
EVs isolated from women with HGSC. We utilized this 
knowledge to determine whether protein abundance could 
differentiate plasma EV samples from patients diagnosed 
with HGSC (n = 10) versus controls with non-cancer-
ous gynaecological conditions (n = 9). Donors were age-
matched and ranged from 39–69 years old and an average 
age of 54.8 (Table S4). We chose patients with non-cancer-
ous gynaecological conditions to serve as our controls as an 
effort to account for proteins with roes in non-cancerous 
pathologies or general inflammation, in contrast to ovar-
ian-cancer-specific analytes. A curated list of 471 peptides 
(240 proteins with evidence in ascites and plasma) was sub-
sequently targeted using a PRM method built in PEAKS 
[30] and Skyline [23] (Fig S3). Peak areas were normalized 
to the TIC to correct for technical variability, and addition-
ally normalized to the CD9 peptide EVQEFYK (extracellu-
lar region, AAs 120–126) to control for EV purity. A total of 
21 peptides were significantly different in malignant versus 
non-malignant samples and were used in further analyses 
(Wilcoxon rank-sum test, p < 0.05) (Fig. 3A). Of note, a pep-
tide from CA-125 (MUC16) (ELGPYTLDR) was included 
in our PRM method (ELGPYTLDR). Using the Wilcoxon 
rank-sum test, this peptide achieved p = 0.060 for an AUC 
of 0.76 and log2 fold-change 2.12. While this did not pass 
our statistical threshold, we included it in further analy-
ses based on the use of CA125 as a biomarker for HGSC. 
Based on these 22 peptides, malignant and non-malignant 
samples were partially segregated using PCA and unsuper-
vised k-means classification (Fig. 3B).

(See figure on next page.)
Fig. 3 Targeted Proteomics and Support Vector Machine Classification Identifies Prospective Biomarkers to Distinguish HGSC vs Benign Disease. 471 
peptides corresponding to 240 proteins were analysed in EV‑enriched blood plasma from HGSC (n = 10) versus control (n = 9) donors using PRM. 
(A) Volcano plot highlights peptides that were significantly different between malignant and control donor samples. 21 peptides (p‑value < 0.05) 
and HGSC antigen MUC16 (red) were selected for further analyses. B Unsupervised PCA and k‑means clustering of pooled samples. Predicted 
labels (red and black) partially overlapped with true labels (blue = Benign and orange = HGSC). V‑measure = 0.603. C Hyperparameter tuning 
of the linear SVM was performed by LOOCV, leading to hyperparameters C = 0.025–1 and two principal components selected as the ‘optimized’ 
SVM based on mean accuracy score (> 0.90). Each point of triangulation indicates an SVM combination/fit that was scored using the training set. 
Feature selection was performed using 231 combinations of peptides and test data. From this analysis, nine combinations of peptides provided 
an accuracy score of 1.0 on the test data set (see Figure S4A). D, E For example, the combination of CFHR4 and MUC1 provided a Receiver Operating 
Characteristic‑Area Under the Curve (ROC‑AUC) score of 1.0. F Training (red) and test samples (white) were represented by women with Stage I, II, 
and III EOC
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Fig. 4 Isolation of Plasma EVs by Size Exclusion Chromatography. EVs were isolated using size‑exclusion chromatography from plasma of patients 
with early‑stage HGSC (n = 16) and benign gynecological disease (n = 16). EV concentration and mean diameter were estimated using nanoparticle 
tracking analysis. EV isolations from HGSC and Benign donors displayed comparable (A) particle concentrations and (B) average mean diameter 
of particles detected. Blue horizontal lines represent mean. NTA estimated a mean diameter of 120 µm for plasma EVs. (C, D) Topographical analysis 
of HGSC EVs by atomic force microscopy detected EV‑like particles with mean diameter of 134 nm. (C) Insert a representative line trace of a single 
particle, displaying a dome like structure. D Data represented as mean and standard deviation using box plot with inner quartiles shown. E 
Enrichment Analyses of Reactome and GO Biological Process annotations in comparison to total proteins identified by GPF‑DIA MS/MS



Page 12 of 20Cooper et al. Journal of Ovarian Research          (2024) 17:149 

Machine learning classification models, such as SVMs, 
provide immense utility for identifying novel biomarkers 
due to their ability to provide high-accuracy classification 
using multi-dimensional data when sample numbers are 
limited. This is an attractive feature of SVMs for biomarker 
discovery studies where the acquisition of large donor 
numbers is extremely difficult or impossible. Data features 
were scaled using z-scores, and randomly split into 10 
independent training (70%) and test (30%) sets in a strati-
fied manner. Donor status, such as FIGO stage, remained 
blinded until final validations were performed using the 
test set. As proof-of-principle, we retrospectively chose 
random_state = 6 which contained all FIGO stages in both 
training and test data sets, thus allowing us to speculate on 
the ability of prospective biomarkers to identify early-stage 
HGSC. The optimal hyperparameter(s) were determined 
by LOOCV to reduce variance often obtained with low 
complexity data sets by reserving a single sample for vali-
dation [31](Fig S3). 14,784 total fits or permutations were 
used to calculate a mean accuracy score using Matthew’s 
Correlation Coefficient. From these analyses, we identi-
fied eight linear SVMs (C = 0.025–2) that provided a mean 
accuracy score > 90% (Fig. 3C). Next, we optimized feature 
selection based on Receiver Operating Characteristic-Area 
Under the Curve (ROC-AUC) using the reserved test set. 
The SVM (PC = 2, C = 0.025) was tested 231 times with 
paired permutations of all 22 peptides (Appendix Fig.  5). 
Interestingly, nine combinations of peptides were able to 
classify malignant (n = 4) versus non-malignant (n = 3) sam-
ples with a ROC-AUC = 1.0 (Figure S4A). For example, the 
combination of CFHR4 and MUC1 was able to accurately 
classify Stage I, II, and III donors in comparison to MUC16 
(Fig. 3D-F). Several peptide combinations provided ROC-
AUC = 1.0, however GPX3, MUC1, and CFHR4 were rep-
resented in the majority of models (Table S5) CFHR4 and 
GPX3 were not detected in cell line EVs and MUC1 was 
not detected within CD9AP-EVs; yet, all were considered 
strong drivers of HGSC classification according to SHap-
ley Additive exPlanations (SHAP) analysis [32](Fig S4B,C). 
Interestingly, CFHR4 was also considered a strong driver 
of SVM accuracy in EV-depleted plasma (Fig S5) and was 
speculated to be constituent of the EV corona [33]. Ulti-
mately, we highlight the use of label-free PRM, SVM opti-
mization using LOOCV and parallel enrichment of EVs to 
identify combinatorial biomarkers of HGSC.

Size exclusion chromatography and data‑independent 
library generation uncovers MUC1 as a prospective 
biomarker using targeted proteomics
We next focused our biomarker discovery pipeline to a 
larger cohort of patients diagnosed with FIGO I/II HGSC 
(n = 30) versus controls with non-cancerous gynaecological 
conditions (n = 30). Donors were age-matched and ranged 
from 40–82 years old with an average age of 62.8 (Table S6, 
Figure S6). In these analyses aiming to identify early-stage 
biomarkers, we opted to utilize size-exclusion chromatog-
raphy to increase the purity of plasma EVs while retaining 
sufficient yield for MS analyses. Indeed, EV concentra-
tion and size profiles using nanoparticle tracking analysis 
(Fig. 4A-B) and atomic force microscopy align (Fig. 4C-D) 
with previous reports of plasma EVs. We opted for GPF-
DIA instead of SCX-DDA to account for the increased 
number of samples in the CRCHUM cohort and to mitigate 
additional sample preparation required for the additional 
number of samples and allowed us to generate spectral 
libraries from pooled peptide digests that more accurately 
represent matrix interactions during peptide chromatog-
raphy. In combination with PRTC, GPF-DIA allowed us 
to mitigate retention time shifts during library generation 
that can occur when peptide complexity is decreased with 
offline fractionation. Ultimately, the combination of SEC, 
GPF-DIA, and improved instrumentation increased the 
total number of proteins identified in plasma EVs to 1971 
from 484 obtained using SCX-DDA. In this approach a col-
lection of 50 DIA windows (4 m/z) in 100 m/z bins were 
acquired across 300–1000 m/z, thus equalling 7 injections 
with 2  m/z isolation windows after demultiplexing MS/
MS spectra. Next DIA acquisitions between 400–1000 m/z 
were acquired on pooled EVs isolates to build a spectral 
library of detectable peptides for targeted analyses. Using 
this approach, we were able to identify > 2000 proteins 
across plasma EVs of which 1971 contained a unique pep-
tide. Aligned with UC EVs, SEC EVs were enriched with 
proteins associated with neutrophil degranulation, wound 
healing, and blood microparticles (Fig. 4E).

We selected peptides that provided reproducible reten-
tion times in comparison to internal heavy isotope stand-
ards (r > 0.95). Additional manual curation removed high 
abundant proteins, such as albumin, that would likely 
provide little diagnostic value. In total, we focused on 290 
proteins totaling 495 peptides across two independent 

(See figure on next page.)
Fig. 5 Differential Expression and Principal Component Analysis of PRM Analysis. A Principal Component Analysis (PCA) of targeted proteomics 
comparing plasma EVs from early‑stage high‑grade serous carcinoma (HGSC) patients (stages I and II, n = 30) to controls with benign gynecological 
conditions (n = 30). The PCA plot displays the distribution of samples with benign conditions (green circles), stage I HGSC (purple stars), stage II 
HGSC (purple triangles), and centroids (black crosses) indicating the average position of each group. B Volcano plot illustrating the differential 
protein expression between benign and HGSC EVs. X axis indicated  log2(fold change). Y‑axis indicate ‑log10(p‑value). Proteins of particular interest, 
such as MUC1, CD9, and MUC16, are highlighted and labeled
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PRM methods. PCA of our targeted proteomics high-
lighted the similarity of early-stage HGSC vs benign 
gynecological disease; albeit centroids of HGSC and 
Benign donors were separated on principal components 
that coincided with differential expression levels between 
the two groups (Fig. 5A-B). SERPIND1, AGT, and PROZ 
were enriched within EVs from benign donors, whereas 
peptides for MUC1 and CD9 were significantly elevated 
in HGSC EVs (Fig. 5B). Peptides for MUC1, ‘QGGFLGLS-
NIK’ and ‘DISEMFLQIYK’, were elevated in HGSC EVs 
3.14- and 8.86-fold over benign EVs, respectively. Inter-
estingly, CD9 peptide (TKDEPQRETLK) was elevated 
4.43-fold in HGSC EVs and was the large contribution to 
principal component 1. Unfortunately, our NTA analy-
sis did not assess if elevated CD9 corresponded to an 
increased number of CD9 particles between HGSC ver-
sus benign controls. Similar to our first cohort, the level 
of MUC16/CA-125 was not found to be significant com-
pared to benign controls.

Implementation of our SVM optimization pipeline 
found that high model accuracy (ROC-AUC = 0.95) was 
obtained with increasing feature number up to 10, albeit 
SVM with 2–3 features were able to provide 0.7–0.8 
mean accuracy scores on a training set (Fig. 6A). In order 
to keep the SVM simple, we decided to assess all com-
bination of two feature SVM using a range of cost (C) 
weights. This approached determined C = 1.0 was able to 
identify several combinations of proteins that provided a 
ROC-AUC > 0.85 on a test set (Figure S7A). For example, 
MUC1 and APOC4 were able to correctly classify 8 out 
of 10 HGSC donors and all 10 Benign donors, equaling an 
ROC-AUC = 0.90 (Fig. 6B-C). APOC4 is currently a under 
review by the FDA as a biomarker for ovarian cancer 
(https:// edrn. nci. nih. gov/ data- and- resou rces/ bioma rkers/ 
apoc4/) and demonstrated a high ROC-AUC (0.87) using 
logistic regression within this study (Figure S7B).

Plasma MUC1 is a prospective biomarker for the detection 
of early‑stage HGSC and increases with tumour 
progression
Like SHAP analysis of SVMs trained with the proteome 
UC EVs, MUC1 was classified as a strong driver of HGSC 

vs Benign classification in SVM models built on proteome 
data from SEC-isolated EVs (Fig.  7A). The ‘DISEMFL-
QIYK’ was considered a stronger feature for MUC1 than 
“QGGFLGLSNIK’ and was selected as the representative 
peptide for MUC1 for the second cohort; albeit “QGGFL-
GLSNIK” was considered a stronger driver of classification 
in both cohorts. Two independent PRM studies identified 
MUC1 as a prospective biomarker for early-stage HGSC 
detection. Accordingly, we wanted to determine whether 
MUC1 levels may be able to predict HGSC occurrence 
and/or progression. We focused on quantification of the 
CA15-5 antigen of MUC1 in the validation study in raw 
plasma, which does not include any of the MUC1 peptides 
identified by our MS analysis or EV enrichment. Using an 
ELISA for MUC1 we estimated that the optimal threshold 
for HGSC detection was 22.31 mU/mL. Using this thresh-
old, we detected elevated MUC1 in raw plasma samples 
from HGSC donors as compared to donors with benign 
disease. (Fig. 7B). There was also a significant increase in 
MUC1 levels between FIGO Stage I and Stage II (Fig. 7C). 
Indeed, HGSC was detected with an ROC-AUC = 0.73 
(Fig. 7D,E). These results aligned with our PRM analysis in 
which MUC1 yielded a ROC-AUC = 0.75. Finally, logistic 
regression of MUC1 levels in FIGO I vs FIGO II donors 
was able to generate an ROC-AUC = 0.93 (Fig.  7F,G). 
Taken together, we provide evidence that MUC1 is a pro-
spective biomarker that can augment the classification of 
early-stage HGSC from benign gynecological disease. Like 
CA-125/MUC16, we do not see MUC1 as a stand-alone 
biomarker and view this data as evidence that combina-
torial biomarkers will be necessary for the diagnosis of 
early-stage HGSC.

Discussion
In this study, we characterized EV proteomes derived 
from HGSC cell lines, ascites and plasma using two 
distinct enrichment strategies (UC and CD9AP) to 
maximize proteomic depth and increase the number of 
biomarker candidates. Our findings expand upon pre-
vious work by several other groups that also utilized 
mass spectrometry to characterize EVs derived from 
cells or biofluids. In stark contrast to the previous stud-
ies, we were able to build SVM models using targeted 

Fig. 6 Exploration of Support Vector Machines to Uncover Prospective Biomarkers Capable of Classifying Early‑Stage HGSC vs Benign Gynecological 
Disease. Peptides with p < 0.05 were selected as features for support vector machine model training and validation. HGSC and Benign donors were 
split into training and test data sets. A SVM training using LOOCV was used to determine optimal cost (C) and number of principal components 
or features to maximize prediction accuracy determined by Matthew’s Correlation Coefficient or mean accuracy score. Within these analyses, 
model accuracy was increased with increasing features, however cost weight had less of an influence. Using 2 feature models, we identified several 
combinatorial peptides which provided high sensitivity and specificity using the test data set. For example, (B, C) support vector machine utilizing 
APOC4 and MUC1 was able accurately classify 8 out of 10 HGSC donors and 10 out of 10 Benign donors. ROC‑AUC for this model was determined 
to be 0.90

(See figure on next page.)

https://edrn.nci.nih.gov/data-and-resources/biomarkers/apoc4/
https://edrn.nci.nih.gov/data-and-resources/biomarkers/apoc4/
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proteomics to identify early-stage HGSC from plasma 
EVs in comparison to benign disease.

Our comparisons of EV proteomes from cell lines sup-
ports previous reports of intercellular heterogeneity, 
which may reflect differences in tissue of origin or stages 
of ovarian cancer progression [34]. For example, three dis-
tinct proteomic expression profiles were identified during 
a large-scale proteomic analysis of cell lines and primary 
tumors [35]. We found the EV proteomes of cell lines may 
reflect the pathophysiology of early-stage HGSC, such as 
inflammation [36], ECM remodeling [37] and angiogen-
esis [38]. However, many similarities were noted between 
cancer cells and the non-malignant hIOSE, pointing to 
potential confounders associated with propagation in tis-
sue culture. Building off the proteome of HGSC cell line 
EVs, we expanded our focus to the proteomic profiling 
of EVs from primary sources. We executed an in-depth 
characterization of biofluid-EV proteomes using parallel 
purification strategies, the ‘match-between-runs’ feature 
in MaxQuant [39], SCX StageTip fractionation technol-
ogy [40], GPF-DIA [24] and Orbitrap-based instrumen-
tation. Several efforts have attempted to deplete HAPs 
from biofluids to improve the detection of low-abundancy 
biomarkers [41, 42], however a consensus on the optimal 
method has yet to be determined. To better delineate pro-
teins specific to HGSC, Shender et  al. compared ascites 
from patients with ovarian cancer to those with alcohol-
induced cirrhosis and identified 424 proteins associated 
with malignant ascites. More recently, Sinha et  al. have 
developed an HGSC xenograft model in combination with 
N-glycopeptide enrichment and PRM to identity poten-
tial biomarker candidates in primary patient samples [43]. 
Considering the proteomic complexity of biofluids, it is 
unlikely that a single proteomic approach will be able to 
identify all biomarkers for detecting metastatic HGSC.

Within this study, we demonstrate a robust pipeline 
incorporating EV purification, PRM proteomics, and 
SVM that is tailored for the identification of prospective 
biomarker combinations for early HGSC detection. In 
agreement with previous studies, MUC16 was elevated in 
malignant samples but was not considered a stand-alone 
biomarker due to large sample variability. Combinations 

of MUC16 and additional peptides were able to provide 
high accuracy; however, subsequent investigations with 
larger cohorts will be necessary to determine the diagnos-
tic value of the combinatorial biomarkers uncovered in 
this study. It should be emphasized that our PRM quan-
titation was performed label-free, thus the additional of 
heavy isotope standards would be necessary for absolute 
quantification of prospective and current biomarkers. 
SHAP analysis can provide additional insight into which 
peptides drive prediction outcomes within a machine 
learning classification model [32]. Using these analyses, 
we identified MUC1 as a strong driver of HGSC classifi-
cation using EVs purified by both UC and SEC. MUC1 is 
a single-pass transmembrane protein that is significantly 
upregulated in HGSC. Furthermore it is subjected to iso-
form splicing and deglycosylation during tumorigenesis 
[44]. In the context of cancer, the extracellular domain of 
MUC1 is cleaved and released into systemic circulation 
wherein it appears to contribute to several intercellular 
signaling networks via RTK, EGFR and Akt interactions 
[45–47]. MUC1 has been proposed as a biomarker for 
HGSC monitoring and was elevated in HGSC EVs isolated 
from pooled plasma [22]. This study provides two addi-
tional proteomic analyses that identify MUC1 as a pro-
spective biomarker in plasma EVs of HGSC donors. We 
validated our PRM analyses by employing ELISA quantifi-
cation on the MUC1 antigen CA15-3. Indeed, MUC1 was 
significantly elevated in HGSC donors and provided high 
sensitivity using logistic regression. Unfortunately, MUC1 
provided an ROC-AUC = 0.73, thus it cannot be consid-
ered as a stand-alone biomarker. It is likely necessary to 
obtain the sensitivity and specificity for clinical applica-
tion [6, 9, 48]. Accordingly, we identified several protein 
combinations with MUC1 that provided high accuracy 
(ROC-AUC > 0.9). Future efforts will need to validate 
combinatorial biomarkers using an independent cohort of 
HGSC vs Benign donors. Notably, plasma MUC1 was sig-
nificantly elevated in FIGO II compared to FIGO I, thus 
supporting the idea that circulating CA15-3 increases 
with tumour burden. We did not measure glycosylation 
levels on MUC1 in plasma EVs from early-stage HGSC, 
thus future research may benefit from the enrichment of 

(See figure on next page.)
Fig. 7 Validation of MUC1 as prospective biomarker for early‑stage HGSC. A SHAP model analysis reveals strong drivers of SVM classification. 
Positive SHAP values indicate strong drivers of HGSC classification, such as MUC1. On the other hand, APOC4 was determined as a strong driver 
of Benign donor classification. MUC1 (CA15‑3) concentrations were estimated in raw plasma using ELISA. B MUC1 was significantly elevated 
in early‑stage HGSC donors compared to donors with benign disease. Notably, (C) MUC1 was also differentially detected between HGSC donors 
classified as FIGO I vs II. D, E Using logistic regression for classification, MUC1 produced an AUC‑ROC = 0.73 and correctly identified 17 out of 18 
HGSC donors; albeit 10 out of 18 Benign donors were misclassified. F, G Logistic regression classification of HGSC donors into FIGO I vs FIGO II 
provided an AUC‑ROC = 0.93. 7 out of 9 HGSC donors at FGIO II were correctly classified; moreover, 8 out of 9 HGSC donors were correctly classified 
as FIGO I. Data in B,C represented a box plots with quartiles. Red dashed line indicates predicted threshold of MUC1 to confidently indicate HGSC vs 
benign disease. * = 0.05 > p‑value determined by Mann–Whitney U Test
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glycopeptides for PRM analyses [43]. Recently, Wenk et al. 
identified a glycopeptide from the protein Latent Trans-
forming Growth Factor Beta Binding Protein 1 (LTBP1) 
that outperformed MUC16 for monitoring remission and 
recurrence in a cohort of patients with HGSC [49]. Con-
sidering glycosylation of proteins is often altered during 
disease, we consider the glycoproteome of EVs an under-
explored landscape for biomarker mining to support 
the detection of early-stage HGSC. Hamester et  al. have 
demonstrated that glycosylation of adhesion molecules 
involved in spheroid formation are corelated with poor 
clinical prognosis [50]. Taken together, additional prot-
eomic techniques may be useful to uncover prospective 
biomarkers for early-stage detection of HGSC.

A limitation of our study was the absence of platelet 
depletion in biofluid samples prior to cryopreservation, 
likely limiting proteomic depth due to an abundancy 
platelet proteins [51–53]. This issue, common in prot-
eomic research, might have obscured low-abundance, 
HGSC-specific proteins. Restricted sample volumes 
obtained from biobanks limited our ability to validate 
additional biomarkers besides MUC1. Nevertheless, our 
methodology robustly identified combinatorial biomark-
ers with high diagnostic specificity and sensitivity for 
early-stage HGSC. Future studies will need to consider 
all aspects of plasma collection and storage to enhance 
our biomarker detection pipeline. Despite this challenge, 
our findings contribute significantly to early HGSC diag-
nostics and highlight the potential for early intervention 
strategies focused on EV proteomes.
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