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Abstract
Background Immunotherapy has revolutionized the treatment of ovarian cancer (OC), but different immune 
microenvironments often constrain the efficacy of immunotherapeutic interventions. Therefore, there is an imperative 
to delineate novel immune subtypes for development of efficacious immunotherapeutic strategies.

Methods The immune subtypes of OC were identified by consensus cluster analysis. The differences in clinical 
features, genetic mutations, mRNA stemness (mRNAsi) and immune microenvironments were analyzed among 
subtypes. Subsequently, prognostic risk models were constructed based on differentially expressed genes (DEGs) of 
the immune subtypes using weighted correlation network analysis.

Results OC patients were classified into three immune subtypes with distinct survival rates and clinical features. 
Different subtypes exhibited varying tumor mutation burdens, homologous recombination deficiencies, and mRNAsi 
levels. Significant differences were observed among immune subtypes in terms of immune checkpoint expression 
and immunogenic cell death. Prognostic risk models were validated as independent prognostic factors demonstrated 
great predictive performance for survival of OC patients.

Conclusion In this study, three distinct immune subtypes were identified based on gene sets related to vaccine 
response, with the C2 subtype exhibiting significantly worse prognosis. While no statistically significant differences in 
tumor mutation burden (TMB) were observed across the three subtypes, the homologous recombination deficiency 
(HRD) score and mRNA stemness index (mRNAsi) were notably elevated in the C2 group compared to the others. 
Immune infiltration analysis indicated that the C2 subtype may have an increased presence of regulatory T (Treg) 
cells, potentially contributing to a more favorable response to combination therapies involving PARP inhibitors and 
immunotherapy. These findings offer a precision medicine approach for tailoring immunotherapy in ovarian cancer 
patients. Moreover, the C3 subtype demonstrated significantly lower expression levels of immune checkpoint genes, 
a pattern validated by independent datasets, and associated with a better prognosis. Further investigation revealed 
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Introduction
Ovarian cancer (OC) is one of the three major tumors 
of the gynecological reproductive system [1]. As OC 
lesions located deep in the female pelvic cavity are diffi-
cult to detect early, most OC patients are at a late stage 
at the time of first diagnosis. Cytoreductive surgery com-
bined with platinum-based chemotherapy is an effective 
method for OC treatment [2]. However, the five-year 
survival rate of OC patients is only about 30%, and the 
recurrence rate is as high as 60–70% [3]. Immunotherapy 
has a high potential for treating advanced OC with posi-
tive effects on the prognosis [4]. Previous studies have 
confirmed OC as an immunogenic tumor, and tumor-
infiltrating lymphocytes in the tumor tissue are posi-
tively correlated with the prognosis of OC patients [5–7]. 
Therefore, immunotherapy is an increasingly important 
option for OC treatment.

Theoretically, immunotherapy should be a viable 
approach for ovarian cancer, given the higher tumor 
mutation burden (TMB) and homologous recombination 
deficiency (HRD) observed in patients [8, 9]. However, 
clinical trial outcomes have shown that ovarian cancer 
patients do not respond to immunotherapy as favorably 
as expected. The objective response rate (ORR) to single-
agent immune checkpoint blockade (ICB) such as PD-L1 
or PD-1 ranges from 10–25% [10]. The relationship 
between PD-L1 expression and the prognosis of ovarian 
cancer is still controversial. Previous studies have shown 
that high expression of PD-L1 is common in OC patients 
with poor prognosis [11–13], but recent studies have 
shown that low expression of PD-L1 actually predicts 
poor prognosis of OC patients [14]. Clinically, the effi-
cacy of immunotherapy varies significantly between indi-
viduals because of inter- and intratumoral heterogeneity 
of the immune microenvironment [15]. To enhance the 
efficacy of immunotherapy in ovarian cancer, combina-
tion therapies such as ICB with PARP inhibitors (PARPi) 
have been suggested [16, 17]. The proportion of immune 
effector cells/inhibitory cells, the location of immune 
cell infiltration, and the degree of immune cell activa-
tion in the tumor microenvironment are important fac-
tors affecting the prognosis and clinical immunotherapy 
response [18]. Therefore, the advent of CAR T-cell ther-
apy holds promise for advancing ovarian cancer immu-
notherapy. Current preclinical trials are exploring the use 
of modified T lymphocytes targeting molecules such as 
NY-ESO-1, HER2, MUC16, and p53 in ovarian cancer. 
However, only a few researches provide comprehensive 
investigations about immune landscape and profiles of 

OC to improve the prognosis and immune therapy of OC 
patients.

In this study, we identified and validated three immune 
subtypes of OC (C1–3) by cluster analysis based on the 
MSigDB database and The Cancer Genome Atlas (TCGA) 
database. Subsequently, we constructed risk models and 
screened prognostic factors based on weighted gene co-
expression network analysis (WGCNA) and the differ-
entially expressed genes (DEGs) of the immune subtypes 
(Fig. 1). This study not only afforded novel signatures for 
OC patients’ prognosis, but also helped stratify and select 
OC patients for individual immunotherapy.

Materials & methods
Data acquisition
Data of The Cancer Genome Atlas ovarian cancer data 
collection (TCGA-OV) survival (n = 587), phenotype 
(n = 758), and genetic mutations were obtained from the 
GDC (https://portal.gdc.cancer.gov/). RNA-seq(n = 379) 
and CNV (n = 620) dataset was downloaded from UCSC 
Xena (https://xenabrowser.ne/). The data set GSE26712 
(n = 195) used for validation was obtained from the GEO 
database.

Identification of immune subtype
A total of 347 vaccine response-related gene sets contain-
ing 13,426 genes were obtained from the C7 gene set in 
the MSigDB database. (https://www.gsea-msigdb.org/
gsea/MSigDB/), of which 12,653 genes were detected to 
be expressed in the tumor samples of TCGA-OV dataset. 
Based on 12,653 genes, a Lasso-Cox regression analy-
sis was performed on the TCGA-OV dataset using the 
R package glmnet(version 4.1-8). Parameters of LASSO 
regression (LR) are family = “cox”, with random sampling 
and 10-fold cross-validation in the “cv.glmnet” function 
sets. Then 48 key survival- related genes were identified.

The R package ConsensusClusterPlus (version 1.64.0) 
was used for unsupervised clustering of TCGA-OV can-
cer samples based on these 48 key survival-related genes. 
The clustering algorithm was pam, and the distance 
was Pearson. Through comprehensive consideration of 
the matrix heatmap(Fig.  2A) of k = 3 and the consistent 
cumulative distribution function (CDF) map(Fig.  2B), 
patients of TCGA-OV were divided into three subtypes 
C1, C2 and C3. Ovarian cancer patients in GSE26712 
data set were divided into three subtypes as well through 
these 48 genes. Then, the R packages survival (version 
3.5-5) and survminer (version 0.4.9) were used to analyze 

that the immune-related gene FCRL5 correlates with ovarian cancer prognosis, with in vitro experiments showing that 
it influences the proliferation and migration of the ovarian cancer cell line SKOV3.
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the survival of the TCGA-OV subtypes and draw the 
Kaplan–Meier curve, respectively.

Analysis of genetic mutation and Copy Number Variation 
(CNV)
The maf file containing data on the genetic mutations of 
the OC cohort was downloaded from the TCGA data-
base. Then the R package maf tools (version 2.16.0) was 
used to analyze and visualize the mutations. CNV fre-
quencies and distributions were calculated manually and 
visualized via the R program (version 4.3.0).

Differential analysis of immune cells among the immune 
subtypes
The stromal score, immune score, and tumor purity of all 
TCGA-OV and GSE26712 data samples were calculated 
using the R package Estimate (V.1.0.13). The CYT score 
was defined as the geometric mean of the granzyme A 
(GZMA) and perforin 1 (PRF1). The CIBERSORT algo-
rithm deduced the proportion of 22 kinds of immune 
cells in the sample using the expression levels of specific 
genes. The expression matrices of characteristic genes 
were first extracted from the complete expression data. 
Then, the R package CIBERSORT (version 1.03) was 
used to calculate the proportion of immune cells in all 
samples from TCGA-OV and GSE26172 data combined 
with the existing immune cell signature file. The Wilcox 
test was used to detect the difference in the proportion of 
immune cells in the three subtypes.

Immune landscape analysis
Based on the raw counts of immune-related genes in 
TCGA-OC, the R package monocle (version 2.28.0) ana-
lyzed the cancer samples’ trajectories. The maximum 
group fraction was set as two and the dimension reduc-
tion algorithm was DDR Tree. The distribution of the 

immune subtypes of models with different trajectories 
was displayed by a tree diagram. Since some immune 
subtypes were distributed into two different immune 
tracks, principal component 1 (PC1) and PC2 subdivided 
the immune subtype.

Weighted Correlation Network Analysis (WGCNA)
Weighted Gene Correlation Network Analysis 
(WGCNA) aims to identify co-expressed gene mod-
ules, explore the relationship between gene networks 
and phenotypes, and study core genes in the network. 
The R package WGCNA (V1.69) was used to carry out 
weighted co-expression network analysis of the immune-
related genes to obtain different modules. The soft 
threshold was calculated through the pick Soft Tres hold 
function, and the optimal soft threshold is 14. A scale-
free network was constructed based on soft thresholds, 
and then a topological matrix was constructed, and hier-
archical clustering was performed subsequently. Tak-
ing 50 as the minimum number of genes in a module, 
dynamically cut and identify gene modules to calculate 
eigengenes. The eigengenes of the modules were used 
for survival analysis to obtain prognostic modules. The 
black module was found to be associated with progno-
sis accompanied by a p-value of borderline significance 
(p = 0.05) (Fig. 7A). At the same time, the distribution dif-
ferences of different module eigengenes among different 
subtypes were counted, and the significance of the differ-
ences was detected by the Wilcox test.

Construction of a prognostic risk model based on WGCNA
The overall survival (OS)-relevant module was selected 
to calculate the correlation between the gene and the 
module eigengenes. The genes were screened with 
R > 0.9 as the threshold, and then univariate Cox regres-
sion analysis and multivariate regression analysis were 

Fig. 1 A flowchart for identifying immune subtypes and constructing prognostic risk models in ovarian cancer
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conducted for the hub genes to screen for related genes. 
The risk model was constructed according to the follow-
ing formula:

 
Risk scorei =

∑n

(j=1)
expji ∗ βj

Where exp corresponds to the gene expression, β repre-
sents the regression coefficient of the corresponding gene 

in the multivariate regression, i represents the sample, 
and j represents the gene.

Construction of a prognostic risk model based on the 
immune subtype DEGs
The subtype differential genes (DEGs) in the TCGA-OV 
population were calculated using the R package limma 
(version 3.56.2). Using |log FC| >0.3 and p < 0.05 as the 
thresholds, a total of 163 genes were found to be differ-
entially expressed in the three subtypes. Cox univariate 

Fig. 2 The immune subtypes and clinical signatures. (A) Heatmap for unsupervised consensus clustering k = 3basedon 48 immune-related genes of 
TCGA-OV dataset. (B) The cumulative distribution function (CDF) curve of the consensus clustering. (C) The overall survival curve of three subtypes ac-
cording to consensus clustering in TCGA-OV cohort. (D) The distribution of three immune subtypes in different clinical stages and different pathological 
grades, as well as the distribution of these subtypes in patients with lymphoid invasion or radiotherapy. (E) Differential expression of WFD2, MUC1 and 
MUC16 in three immune phenotypes, respectively in TCGA-OV data set (top 3) and GEO26712 data set (bottom 3)
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regression analysis was performed on the DEGs to screen 
for genes with significant prognostic value. Lasso regres-
sion was performed on the results, and a risk scoring 
model was constructed using the R package glmnet. To 
build a more accurate regression model, the cross-valida-
tion method was used for lambda screening, and then the 
model corresponding to lambda min was selected. The 
expression matrix of related genes in the model was fur-
ther extracted, and the risk score of each sample was cal-
culated using the formula. The median was taken as the 
cutoff value, and the samples were divided into high-risk 
and low-risk groups.

Cell line and cell culture
The ovarian cancer cell lines SKOV3 was obtained from 
the American Type Culture Collection (ATCC) and cul-
tured in Roswell Park Memorial Institute 1640 medium 
(Solarbio). All cell media were supplemented with 10% 

fetal bovine serum and maintained in a humidified incu-
bator at 37 °C with 5% CO2.

SiRNA transfection
The SKOV3 cells were seeded onto six-well plates at 
a density of 3 × 107 cells per well and cultured until 
they reached a confluence of 60%. Subsequently, Lipo-
fectamine 2000 (Invitrogen) was used for transfecting the 
cells with siRNAs from Sangon Biotech. After a 8 hours 
incubation in serum-free medium, it was replaced with 
medium containing 10% fetal bovine serum (FBS). Fol-
lowing an additional twenty-four hour incubation period, 
qRT-PCR analysis was carried out to assess the effective-
ness of knockdown. FCRL5: siRNA-1 sense: 5’- C G G A A 
G U A A C A C U G A A U A A-3’, antisense: 5’- U U A U U C A G U 
G U U A C U U C C G-3’; siRNA-2 sense: 5’- A A G A U U C U C 
U G C G C A C U U U-3’, antisense: 5’- A A A G U G C G C A G A G 
A A U C U U-3’; The transfected cells will be prepared for 
CCK-8 and transwell assays.

Fig. 3 TMB, HRD, and mRNAsi of the immune subtypes. (A) Waterfall plot depicting the top 20 mutated genes of TCGA-OV patients in three subtypes. 
(B) Copy number variation landscape across three immune subtypes, with red representing gain and blue representing loss. (C) Differences in total copy 
number variant frequencies among the three immune subtypes. (D) HRD scores and genomic loss of heterozygosity (LOH) scores of the three immune 
subtypes. (E) Differences in mRNAsi among the three immune subtypes

 



Page 6 of 14Gao et al. Journal of Ovarian Research          (2024) 17:208 

Results
Identification of immune subtypes in OC
Using the vaccine response data set of the c7 immune 
gene set from the MSigDB dataset, 48 immune-related 
genes associated with prognosis were identified using 
lasso-cox regression analysis. The OC samples were 
divided into three immune subtypes via the unsupervised 
clustering “Pam” method (Fig. 2A, B). Kaplan–Meier sur-
vival curves confirmed that the immune subtypes were 
significantly associated with the survival of OC patients 
(Fig. 2C). The cluster C2 exhibited the poorest prognosis 
when compared to the other two groups. Subsequently, 
the differences in clinical characteristics between the 
three immune subtypes were analyzed. The results dem-
onstrated that patients with different clinical stages, 
neoplasm histological grades, and radiation therapy 
showed different proportions of the subtypes, indicating 
that the immunological subtypes correlate with clinical 
characteristics (Fig.  2D). Furthermore, we explored the 
expression of WFDC2, MUC1, and MUC16, which are 

OC biomarkers. All of them were upregulated in OC by 
immunohistochemical (IHC) tests [19] (Figure S1). The 
TCGA-OV data confirmed the downregulation of MUC1 
in the C3 subtype, while data from GSE26712 showed 
significant upregulation of WFDC2 and MUC16 in the 
C3 subtype (Fig. 2E).

Tumor Mutation Burden (TMB), Homologous 
Recombination Deficiency (HRD), and mRNA Stemness 
Index (mRNAsi) in the immune subtypes
The TMB and genetic mutations of the three immune 
subtypes were calculated using maf tools based on the 
TCGA dataset. The results confirmed significant differ-
ences among the immune subtypes in both TMB and 
genetic mutation. Then, we selected the top 20 mutant 
genes to analyze the CNV of OC patients and found that 
the incidence of CNV was associated with the immune 
subtypes (Fig.  3A–C). The HRD scores of the TCGA 
cohort have been published [20–22]. We downloaded 
the HRD scores and analyzed the differences between the 

Fig. 4 Immune-related factors of the immune subtypes. (A) Differentially expressed Immune checkpoints (ICPs) of the three immune subtypes in the 
TCGA-OV cohort. (B) Immunogenic cell death(ICD)-related molecules of the three immune subtypes in the TCGA-OV cohort. (C) Stromal score, immune 
score, and tumor purity of different subtypes in TCGA-OV cohort. (D) Heat map of significantly different infiltrating immune cells among the three sub-
types in TCGA-OV cohort. (E) Box plots of immune cell infiltration fraction in TCGA-OV cohort
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immune subtypes, demonstrating that different immune 
subtypes had different HRD scores (Fig.  3D). The C2 
subtype showed the highest tumor mutation burden, 
the highest frequency of copy number variations, and 
the highest homologous recombination deficiency score 
(Fig. 3), compared to the other two subtypes. Moreover, 
although the TMB, types of BRCA1 and BRCA2 muta-
tions in C2 were not significantly different from those 
observed in the other two groups, the specific mutation 
sites varied significantly (Figure S2). Additionally, the fre-
quency of BRCA1 mutations was notably higher in the 
C2 compared to the other two clusters. The gene stem-
ness features were obtained from the published litera-
ture [23], and the mRNAsi was calculated based on the 
mRNA data of the TCGA-OV cohort. The mRNAsi of C2 
was significantly higher than that of C1 or C3, and there 
was no significant difference in other subtypes(Fig. 3E).

Immune-related factors in immune subtypes
The immunocompetences of the immune subtypes were 
compared via TIP web (http://biocc.hrbmu.edu.cn/TIP/), 
and C1, C2, and C3 were significantly different in most of 
the immunocompetence indexes (Figure S3A). Next, we 
found the differential expressions of immune checkpoints 
(ICPs) in the three subtypes (Fig.  4A, Figure S3B), as 
well as immunogenic cell death (ICD)-related molecules 
(Fig.  4B, Figure S3C). To explore the differences in the 
immune cells among the immune subtypes, the stromal 
score, immune score, and tumor purity were calculated 
based on the data from TCGA-OV and GSE26172. The 
results showed differences between the three subtypes 
in immune score and tumor purity (Fig. 4C, Figure S3D). 
Furthermore, the three subtypes showed different per-
centages of infiltrating immune cells, such as T cells CD8, 
NK cells activated, macrophages M1, macrophages M2, 
and dendritic cells activated (Fig. 4D, E, Figure S3E, F).

Fig. 5 Immune cell infiltration of subtypes in ovarian cancer. (A) Trajectory of the TCGA-OV samples based on immune cell infiltration and distribution 
of the immune subtypes in the tree diagram by monocle. (B) Correlations between PC1/PC2obtained by principal component analysis and 22 immune 
cells. (C) Distribution of subgroups of the immune subtypes C1 (left) and C3 (right)in the tree diagram. (D) Proportion of immune cells in the subgroups 
C1A/C1B (left) and C3A/C3B (right)
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Immune landscape of OC
Based on the immune-related gene matrix of TCGA-
OV, Monocle software was used to analyze the trajec-
tory of the cancer samples, and then the distribution of 
the immune subtypes of samples with different trajecto-
ries was displayed by a tree diagram. The tree diagram 
shows that each subtype was mostly in different branches 
(Fig. 5A). The correlation between PC1/PC2 and 22 kinds 
of immune cells such as different subtypes of B cells and 
T cells was calculated (Fig. 5B). PC1 and PC2 were used 
to subdivide C1, C2, and C3 because of the distribu-
tion of one immune subtype into two different branches 
(Fig.  5C). The results showed that C1 had a separate 
branch, while C1A and C1B were in the same branch, 
and C3A and C3B were in the same branch. The distribu-
tion of the C1A and C1B immune cells and C3A and C3B 
(Fig.  5D) showed differences. The enrichment score of 
T cell was higher in C1A compared with C1B (p < 0.05), 
such as central memory CD4 T cell, central memory 
CD8 T cell, effector memory CD4 T cell. The enrichment 
score of T cells was also higher in C3A, in addition to the 
enrichment fraction of B cells, when compared to C3B.

Construction of WGCNA network and risk model
WGCNA was performed based on expression of 
immune-related genes in TCGA-OV cohort. After soft 
threshold screening, a network was constructed with 
power 14 (Fig. 6A–E). Then, eigengenes corresponding to 
each sample of each module were calculated. The results 
showed that there were significant differences in the dis-
tribution of the module eigengenes in the immune sub-
types (Fig. 6F).

Survival analysis was performed on the module using 
eigengenes, and the results showed that the black module 
was significantly correlated with prognosis (Fig. 7A). GO 
analysis was then performed on the black module genes 
(Fig. 7B).

The black module contained 71 genes, and 13 genes 
(R>0.9) were selected as hub genes. Five prognostic-
related genes were obtained by univariate Cox regression 
analysis (Table S2), and an independent prognosis-related 
gene (Fc receptor-like 5, FCRL5) was finally accepted by 
stepwise regression method. The risk score of samples 
was calculated by aformula: risk score = (-0.17 *FCRL5), 
and the median 0.0083 was used as the cutoff value to 
divide sample into the high/low-risk groups (Fig.  7C, 
D). There was a significant difference in survival rate 

Fig. 6 Construction of WGCNA co-expression network. A. Tree diagram of samples in TCGA-OV cohort. B Scale-free fit index analysis of soft thresholds. 
C. The average connectivity analysis of soft thresholds. D. Clustering dendrogram of co-expression network analysis based on the gene hierarchical, 
modules were constructed and displayed in different colors. E. Number of genes in the module. F. Differences in the distribution of module eigengenes 
among subgroups
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between the high-risk and low-risk groups(p = 0.018)
(Fig.  7E).The area under the receiver operating charac-
teristic (ROC) curve(AUC)is 0.625,indicating that the 
model has a certain prediction efficiency (Fig.  7F). We 
investigated whether clinical characteristics and risk 
scores were associated with prognosis. First, a single-
factor Cox regression analysis was performed, and the 
results showed that only the p-value of the risk score was 
less than 0.05 (Figure S5A). Multivariable cox regression 
analysis using these factors as covariates showed that risk 
score remained an independent prognostic factor for 
overall survival (p = 0.008) (Figure S5B).

Construction of the prognostic model by the immune 
subtype DEGs
The DEGs of the three subtypes were obtained using the 
R package limma, and 163 DEGs were shared by these 

subtypes (Figure S4). A total of six DEGs (RP1-67A8.3, 
IGLV3-25, IGHV3-13, IGKV3OR2-268, WFDC12, 
and LINC00454) were found with significant prog-
nostic values (Fig.  8A-B, Figure S6A-B), and we con-
structed a risk model based on these six genes using 
lasso regression (Fig.  8C–E). The risk score of TCGA-
OV samples was calculated by aformula: risk score = 
(-0.11*RP1-67A8.3)+(-0.04*IGLV3-25)+(-0.05*IGHV3-
13)+(-0.09*IGKV3OR2-268)+(-0.099*WFDC12)+(0.
09*LINC00454). The high- and low-risk groups were 
divided based on the median of calculated risk score. The 
Kaplan–Meier curve showed that the high-risk group had 
a poorer prognosis than the low-risk group (Fig. 8F). The 
AUC of six DEGs model was 0.734 and it was increased 
with the time when 1, 2, and 3 year by ROC were analyzed 
(Fig. 8G, Figure S6C), suggesting an excellent diagnostic 
value of the model. We also evaluated the risk score of 

Fig. 7 Construction of the prognostic model of ovarian cancer based on the results of WGCNA. (A) Univariate cox analysis with WGCNA module. (B) GO 
analysis of genes in the black module. (C) Distribution of risk scores (top, red represents high-risk group, blue represents low-risk group) and survival status 
(bottom, red represents patient death, blue represents alive) of TCGA-OV patients. (D) Heat map of risk score of TCGA-OV patients. (E) Kaplan–Meier curve 
of different risk groups. F. ROC curve of the single gene risk model
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the three immune subtypes and demonstrated that the 
C2 subtype had an overall higher risk score, while the C3 
subtype had the opposite (Fig. 8H). We also used Pearson 
correlation analysis to examine the correlation between 
the six DEG members. As shown in Fig.  8I, significant 
positive correlations were observed between IGHV3-13 
and both IGLV3-25and IGKV3OR2-268. Finally, we con-
firmed the association between the expression of the six 
DEGs with the main infiltrating immune cells. These data 

indicated that IGHV3-13, IGLV3-25, and IGKV3OR2-268 
were significantly correlated with the most significant 
numbers of immune cells, such as B cells, eosinophils, 
and T cells (Fig. 8J).

Discussion
In this study, we screened 48 genes significantly associ-
ated with OC prognosis from 13,426 vaccine response 
genes, and then identified three subtypes of OC (C1, C2, 

Fig. 8 Construction of the prognostic model based on the immune subtypes. (A) Prognostic vaccine response related genes screened by univariate Cox 
regression. (B) Kaplan–Meier curve of six prognostic genes. (C) Ten-fold cross-validation error rate plot (left) and lasso regression coefficient profile (right). 
(D) Regression coefficient corresponding to the screened variables. (E) Heat map of genes in the lasso regression model. (F) Kaplan–Meier curve of high-
risk and low-risk groups divided by risk score. (G) ROC curve of the risk model. (H) Differences in risk scores among three immune subtypes, p < 0.05 was 
considered statistically significant. (I) Correlation between six factors of the risk model. (J) Association between factors of the risk model and immune 
infiltrating cells
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and C3) based on these 48 prognostic signatures. Subse-
quently, the relationships between the subtypes and the 
clinical characteristics were assessed. The results dem-
onstrated that OC patients in the C2 subtype had better 
survival than the two other subtypes, and the immune 
subtypes were connected to the clinical stage, neoplasm 
histological grade, and radiation therapy. This indicates 
that immune subtypes might affect tumorigenesis and 
progression of OC. WFDC2 is a novel effective bio-
marker for OC recurrence, and MUC1 is an ideal target 
for targeted therapy to control metastasis and recur-
rence of OC [24, 25]. The C3 subtype showed the lowest 
expression levels of WFDC2 and MUC1 of the three sub-
types. The above results suggest that the three subtypes 
have different clinical features.

TMB, or the number of somatic mutations, has 
been widely studied as a biomarker of immunother-
apy response [26]. A higher TMB increases the likeli-
hood of tumor neoantigen production, which in turn 
improves immune recognition and the antitumor effects 
of immunotherapy [27, 28]. The C2 subtype was con-
firmed to have a higher CNV frequency than C1 and 
C3. Subsequently, we analyzed the HRD of the three 
subtypes, which causes the genetic mutations and TMB 
[29, 30]. The results suggested that the C2 subtype had 
a higher HRD score, indicating that C2 may respond 
better to combination therapies involving PARP inhibi-
tors and immunotherapy. And the latest study utilizing 
single-cell gene expression profiling and T cell receptor 
analysis identified effector regulatory T cells (eTregs) as 
critical responders to homologous recombination defi-
ciency (HRD) and neoadjuvant therapy in high-grade 
serous ovarian cancer (HGSOC), offering novel insights 
into the immunotherapeutic potential for HRD-associ-
ated tumors. Consistent with these findings, our analy-
sis demonstrated that the C2 subtype is characterized by 
both elevated HRD scores and an increased fraction of 
Treg cells(Figure S2F), suggesting heightened sensitivity 
to these treatments [31].

Many inhibitory immune checkpoint proteins exist in 
the immune system, such as PD-1 and CTLA4. These 
proteins are usually derived from activated lymphocytes 
and tumor cell surfaces, with functions to adjust self-
tolerance, prevent autoimmune reactions, and protect 
tissues from immune attack [32]. They can also inhibit 
the proliferation and activation of T cells so that cancer 
cells evade immune surveillance [33]. ICD is a unique cell 
death mode that can induce specific immunity against 
tumor cell antigens. This immune response can cause 
an increase in the number of T lymphocytes, which is 
strongly correlated with the prognosis after chemother-
apy [34]. In this study, the C3 subtype showed the lowest 
gene expression of most of the ICPs, and the highest gene 
levels in some ICD-related molecules. Therefore, the C3 

subtype has more potential to show satisfactory results 
after chemotherapy and immunotherapy. The survival 
analysis agreed with this hypothesis, confirming a better 
prognosis for C3 than for C1 or C2.

As an important part of the tumor microenvironment, 
immune cells have dual functions of immune stimula-
tion and immunosuppression, which can promote or 
inhibit tumor progression [35, 36]. We found that the C3 
subtype contained fewer immune cells, such as neutro-
phils. Tumor-infiltrating Tregs are associated with poor 
prognosis of OC patients [37, 38]. OC patients with a 
decreased ratio of neutrophils to lymphocytes have a bet-
ter prognosis, probably because neutrophils in the micro-
environment can promote the progression and metastasis 
of OC by the formation of neutrophil extracellular traps 
and release of cytokines and chemokines [39–41]. These 
results partly explain why OC patients in the C3 subtype 
had a better prognosis than patients in subtypes C1 and 
C2. The C2 subtype could be further subdivided into C2A 
and C2B, and there were significant differences between 
C2A and C2B in 21 tumor-infiltrating immune cells. 
This finding might account for the interesting phenom-
enon that C2 did not have the highest immune score but 
showed the worst survival.

WGCNA aims to find co-expressed gene modules, 
explore the correlation between gene networks and phe-
notypes, and dig out the core genes in the network [42]. 
We performed WGCNA on the immune-related genes 
and found that the eigengenes of the three immune sub-
types differed in the black, blue, pink, and turquoise 
modules. Of these, the black module was significantly 
associated with the prognosis of OC patients. The genes 
in the black module were screened, and FCRL5 was 
selected as an independent prognostic factor to construct 
the risk model. FCRL5 is a surface protein expressed 
selectively on B cells and plasma cells [43]. Overexpres-
sion of FCRL5 has been detected in skin cutaneous mel-
anoma and multiple myeloma, but the role of FCRL5 in 
OC remains unknown [43, 44]. In our study, the function 
of FCRL5 in ovarian cancer cells was assessed in vitro. 
The results from CCK-8 and cell migration assays showed 
that knockdown of FCRL5 significantly suppressed the 
proliferation and migration of ovarian cancer cells (Fig-
ure S7). In addition to this, the risk model based on 
FCRL5 also demonstrated that the survival of patients in 
the high-risk group was shorter than that in the low-risk 
group, and showed a favorable forecast performance.

Subsequently, we screened the shared DEGs of the 
three immune subtypes, and six genes (RP1_67A8.3, 
IGLV3_25, IGHV3_13, IGKV3OR2_268, WFDC12, and 
LINC00454) were selected to construct a new prognostic 
risk model. The Kaplan–Meier curve confirmed that the 
patients in the high-risk group had a poorer prognosis 
than those in the low-risk group. The ROC curve showed 
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an excellent forecast performance of this risk model, with 
AUC of 0.734. The risk model was performed to predict 
the prognosis of the immune subtype. The C3 subtype 
had the lowest risk score, while the C2 subtype had a rel-
atively higher risk score. The results were in accord with 
the survival analysis of the three subtypes and reflected 
the model’s accuracy.

In recent years, there has been a growing interest 
in classifying ovarian cancer (OC) based on immune-
related genes to predict patient prognosis. For instance, 
Ye et al. identified two immune subtypes of OC patients 
through hierarchical clustering using immune pathway-
based analysis [43]. Lu et al. identified two immune 
subtypes based on 26 prognostic immunologically rel-
evant genes [44]. However, despite these studies, there 
is currently no standardized classification method and 
discrepancies still exist regarding the biological signifi-
cance and prognostic value of these immune subtypes. 
In contrast to previous research, our study incorporates 
vaccine-related genes along with immune gene expres-
sion to classify OC patients into more refined immune 
subtypes. This approach not only provides novel theoreti-
cal insights for future immunotherapy but also serves as 
a crucial reference for vaccine development and patient 
stratification in clinical practice. Through this study, we 
aim to gain a better understanding of the heterogeneity 
within the OC immune microenvironment and its impact 
on patient prognosis, ultimately facilitating the develop-
ment of more precise and personalized immunotherapy 
strategies in future clinical practice.

Although we performed a systematic analysis on the 
role of the immune subtype, and cross-certified the 
result through different methods, the study has some 
limitations. Firstly, there is no information about immu-
notherapy in TCGA-OV, which made the study lack the 
confirmation of association between immune subtypes 
and immunotherapy. Secondly, we couldn’t identify 
whether the immune subtype was an independent prog-
nostic factor after the thorough adjustment of clinico-
pathological information. More investigations are needed 
to certify the prognostic and immunological value of 
immune subtypes and prognostic risk models.

Conclusion
Through this study, we identified significant differences 
in tumor mutation burden (TMB), homologous recom-
bination deficiency (HRD), and immune cell infiltration 
across different immune subtypes. This offers new per-
spectives for predicting patient prognosis and therapeu-
tic response. The classification of immune subtypes in 
this study will help to identify OC patients suitable more 
precisely for immunotherapy, and in the context of vac-
cine development, this stratification method holds broad 
future potential.
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