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Following publication of the original article [1], the 
authors reported the below errors:

1. Reference citations in table 3 were incorrect. Correct 
table 3 is shown below.
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Authors.
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Incorrect Table 3:

Table 3 Potential oocyte maturation biomarkers

Gene ID Description Previous Study Method of Detection Fold Change 
in this study

ADAMTS1 ADAM Metallopeptidase with Thrombospondin Type 1 Motif 1 Devjak et al. 2012 [19] RNAseq 2.27

Yerushalmi et al. 2014 [20] RNAseq

ANK2 Ankyrin 2 Devjak et al. 2012 [19] RNAseq  − 3.13

ANKRD57 aka. SOWAHC, Sosondowah Ankyrin Repeat Domain Family Member C Ouandaogo et al. 2011 [21] Microarray  − 2.21

AOC2 Amine Oxidase, Copper Containing 2 Ouandaogo et al. 2011 [21] Microarray 3.72

AREG Amphiregulin Feuerstein et al. 2007 [22] RT-qPCR 5.4

BDNF Brain Derived Neurotrophic Factor Anderson et al. 2009 [23] RT-qPCR 2.68

BMP2 Bone Morphogenetic Protein 2 Devjak et al. 2012 [19] RNAseq 2.46

BUB1 BUB1 Mitotic Checkpoint Serine/Threonine Kinase Devjak et al. 2012 [19] RNAseq  − 4.28

Feuerstein et al. 2012 [24] Microarray

C10orf10 aka. DEPP1, Autophagy Regulator Devjak et al. 2012 [19] RNAseq 2.99

CCDC99 aka. SPDL1, Spindle Apparatus Coiled-Coil Protein 1 Devjak et al. 2012 [19] RNAseq  − 3.46

CDH3 Cadherin 3 Devjak et al. 2012 [19] RNAseq  − 14.26

COX2 aka. PTGS2, Prostaglandin-Endoperoxide Synthase 2 Feuerstein et al. 2007 [22] RT-qPCR 4.00

Anderson et al. 2009 [23] RT-qPCR

Wathlet et al. 2011 [25] RT-qPCR

Yerushalmi et al. 2014 [20] RNAseq

CRHBP Corticotropin Releasing Hormone Binding Protein Devjak et al. 2012 [19] RNAseq  − 5.41

DHCR24 24-Dehydrocholesterol Reductase Yerushalmi et al. 2014 [20] RNAseq 2.29

DSE Dermatan Sulfate Epimerase Devjak et al. 2012 [19] RNAseq  − 2.36

F2RL1 F2R Like Trypsin Receptor 1 Ouandaogo et al. 2011 [21] Microarray  − 3.06

FSHR Follicle Stimulating Hormone Receptor Yerushalmi et al. 2014 [20] RNAseq  − 8.13

GABRA5 Gamma-Aminobutyric Acid Type A Receptor Alpha5 Subunit Devjak et al. 2012 [19] RNAseq  − 3.93

GLRA2 Glycine Receptor Alpha 2 Devjak et al. 2012 [19] RNAseq  − 28.47

GPX Glutathione Peroxidase 3 Yerushalmi et al. 2014 [20] RNAseq  − 3.56

GREM1 Gremlin 1, DAN Family BMP Antagonist Anderson et al. 2009 [23] RT-qPCR  − 2.03

Yerushalmi et al. 2014 [20] RNAseq

HSD11B1 Hydroxysteroid 11-Beta Dehydrogenase 1 Devjak et al. 2012 [19] RNAseq 2.95

ID2 Inhibitor of DNA Binding 2 Ouandaogo et al. 2011 [21] Microarray 3.53

ID3 Inhibitor of DNA Binding 3 Devjak et al. 2012 [19] RNAseq  − 4.9

ITGB3 Integrin Subunit Beta 3 Devjak et al. 2012 [19] RNAseq  − 4.05

ITPKA Inositol-Trisphosphate 3-Kinase A Wathlet et al. 2011 [25] RT-qPCR 2.49

LHCGR Luteinizing Hormone/Choriogonadotropin Receptor Yerushalmi et al. 2014 [20] RNAseq 3.72

MAOB Monoamine Oxidase B Devjak et al. 2012 [19] RNAseq  − 2.38

MGP Matrix Gla Protein Devjak et al. 2012 [19] RNAseq  − 8.01

NDP Norrin Cystine Knot Growth Factor Devjak et al. 2012 [19] RNAseq  − 2.4

NID2 Nidogen 2 Devjak et al. 2012 [19] RNAseq 5.46

NKAIN1 Sodium/Potassium Transporting ATPase Interacting 1 Devjak et al. 2012 [19] RNAseq 4.38

NOS2 Nitric Oxide Synthase 2 Yerushalmi et al. 2014 [20] RNAseq  − 2.48

PALLD Palladin, Cytoskeletal Associated Protein Devjak et al. 2012 [19] RNAseq  − 4.13

PTX3 Pentraxin 3 Zhang et al. 2005 [26] Microarray 3.08

Anderson et al. 2009 [23] RT-qPCR

SERPINE2 Serpin Family E Member 2 Feuerstein et al. 2012 [24] Microarray  − 4.31

Yerushalmi et al. 2014 [20] RNAseq

SFRP4 Secreted Frizzled Related Protein 4 Devjak et al. 2012 [19] RNAseq  − 20.39

Feuerstein et al. 2012 [24] Microarray

Yerushalmi et al. 2014 [20] RNAseq

SPOCK2 SPARC (Osteonectin), Cwcv And Kazal Like Domains Proteoglycan 2 Devjak et al. 2012 [19] RNAseq 2.88

Feuerstein et al. 2012 [24] Microarray
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Correct Table 3:

Table 3 (continued)

Gene ID Description Previous Study Method of Detection Fold Change 
in this study

STAR Steroidogenic Acute Regulatory Protein Feuerstein et al. 2007 [22] RT-qPCR 2.67

Yerushalmi et al. 2014 [20] RNAseq

TLL2 Tolloid Like 2 Yerushalmi et al. 2014 [20] RNAseq  − 3.17

TNFSF4 TNF Superfamily Member 4 Devjak et al. 2012 [19] RNAseq  − 4.01

TSPAN7 Tetraspanin 7 Devjak et al. 2012 [19] RNAseq  − 3.3

Table 3 Potential oocyte maturation biomarkers

Gene ID Description Previous Study Method of Detection Fold Change 
in this study

ADAMTS1 ADAM Metallopeptidase with Thrombospondin Type 1 Motif 1 Devjak et al. 2012 [20] RNAseq 2.27

Yerushalmi et al. 2014 [21] RNAseq

ANK2 Ankyrin 2 Devjak et al. 2012 [20] RNAseq -3.13

ANKRD57 aka. SOWAHC, Sosondowah Ankyrin Repeat Domain Family Member C Ouandaogo et al. 2011 [22] Microarray -2.21

AOC2 Amine Oxidase, Copper Containing 2 Ouandaogo et al. 2011 [22] Microarray 3.72

AREG Amphiregulin Feuerstein et al. 2007 [23] RT-qPCR 5.4

BDNF Brain Derived Neurotrophic Factor Anderson et al. 2009 [24] RT-qPCR 2.68

BMP2 Bone Morphogenetic Protein 2 Devjak et al. 2012 [20] RNAseq 2.46

BUB1 BUB1 Mitotic Checkpoint Serine/Threonine Kinase Devjak et al. 2012 [20] RNAseq -4.28

Feuerstein et al. 2012 [25] Microarray

C10orf10 aka. DEPP1, Autophagy Regulator Devjak et al. 2012 [20] RNAseq 2.99

CCDC99 aka. SPDL1, Spindle Apparatus Coiled-Coil Protein 1 Devjak et al. 2012 [20] RNAseq -3.46

CDH3 Cadherin 3 Devjak et al. 2012 [20] RNAseq -14.26

COX2 aka. PTGS2, Prostaglandin-Endoperoxide Synthase 2 Feuerstein et al. 2007 [23] RT-qPCR 4.00

Anderson et al. 2009 [24] RT-qPCR

Wathlet et al. 2011 [26] RT-qPCR

Yerushalmi et al. 2014 [21] RNAseq

CRHBP Corticotropin Releasing Hormone Binding Protein Devjak et al. 2012 [20] RNAseq -5.41

DHCR24 24-Dehydrocholesterol Reductase Yerushalmi et al. 2014 [21] RNAseq 2.29

DSE Dermatan Sulfate Epimerase Devjak et al. 2012 [20] RNAseq -2.36

F2RL1 F2R Like Trypsin Receptor 1 Ouandaogo et al. 2011 [22] Microarray -3.06

FSHR Follicle Stimulating Hormone Receptor Yerushalmi et al. 2014 [21] RNAseq -8.13

GABRA5 Gamma-Aminobutyric Acid Type A Receptor Alpha5 Subunit Devjak et al. 2012 [20] RNAseq -3.93

GLRA2 Glycine Receptor Alpha 2 Devjak et al. 2012 [20] RNAseq -28.47

GPX Glutathione Peroxidase 3 Yerushalmi et al. 2014 [21] RNAseq -3.56

GREM1 Gremlin 1, DAN Family BMP Antagonist Anderson et al. 2009 [24] RT-qPCR -2.03

Yerushalmi et al. 2014 [21] RNAseq

HSD11B1 Hydroxysteroid 11-Beta Dehydrogenase 1 Devjak et al. 2012 [20] RNAseq 2.95

ID2 Inhibitor of DNA Binding 2 Ouandaogo et al. 2011 [22] Microarray 3.53

ID3 Inhibitor of DNA Binding 3 Devjak et al. 2012 [20] RNAseq -4.9

ITGB3 Integrin Subunit Beta 3 Devjak et al. 2012 [20] RNAseq -4.05

ITPKA Inositol-Trisphosphate 3-Kinase A Wathlet et al. 2011 [26] RT-qPCR 2.49

LHCGR Luteinizing Hormone/Choriogonadotropin Receptor Yerushalmi et al. 2014 [21] RNAseq 3.72

MAOB Monoamine Oxidase B Devjak et al. 2012 [20] RNAseq -2.38

MGP Matrix Gla Protein Devjak et al. 2012 [20] RNAseq -8.01
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2. Reference citations in main body text were incor-
rectly cited. Correct citations were listed in the below 
table.

Incorrect Correct

Novel findings from this study enhance available literature exploring 
processes that lead to synchronized oocyte maturity section:

Forty-five genes previously cor-
related with oocyte maturation 
were not differentially expressed 
in the current study (Supplemental 
Table S4) [27]. Three thousand five 
hundred and fifty-four genes

Forty-five genes previously correlated 
with oocyte maturation were not dif-
ferentially expressed in the current 
study (Supplemental Table S4) [19]. 
Three thousand five hundred and fifty-
four genes

Discussion section:

Previous human oocyte maturation 
studies analyzed COCs from in-vitro 
maturation cycles [16, 29–33]

Previous human oocyte maturation 
studies analyzed COCs from in-vitro 
maturation cycles [16, 21, 29–32]

Incorrect Correct

In this study, several factors and their 
regulators involved in nuclear matura-
tion and cell cycle control were dif-
ferentially expressed between cumulus 
cells encapsulating oocytes of different 
maturity, reiterating findings from previ-
ous studies [19, 20, 29, 34]. These 
include cell cycle regulators (BIRC5, 
BUB1, BUB1B, CCNA2, CCNB, CDK1, 
FBXO5 MAD2L1, and PTTG1) and com-
ponents of the centromere (CENPA, 
CENPE, and CENPH) [29]. In our MII-CC 
cohort we observed downregulation 
of MCM2–7, which form the hexam-
eric pre-replication protein complex. 
This complex is involved in initiating 
replication forks and recruiting other 
DNA replication related proteins. 
We also observed downregulation 
of TOP2A, which relaxes supercoiled 
and circular DNA molecules. Reinforc-
ing available literature that states 
that while crucial at the MI stage 
for chromatin remodeling [21, 22], its 
activity decreases in mature oocytes 
[23]

In this study, several factors and their 
regulators involved in nuclear maturation 
and cell cycle control were differentially 
expressed between cumulus cells encap-
sulating oocytes of different maturity, 
reiterating findings from previous studies 
[21, 22, 33, 34]. These include cell cycle 
regulators (BIRC5, BUB1, BUB1B, CCNA2, 
CCNB, CDK1, FBXO5 MAD2L1, and PTTG1) 
and components of the centromere 
(CENPA, CENPE, and CENPH) [21].]. In our 
MII-CC cohort we observed downregula-
tion of MCM2–7, which form the hexam-
eric pre-replication protein complex. This 
complex is involved in initiating replication 
forks and recruiting other DNA replica-
tion related proteins. We also observed 
downregulation of TOP2A, which relaxes 
supercoiled and circular DNA molecules. 
Reinforcing available literature that states 
that while crucial at the MI stage for chro-
matin remodeling [35, 36], its activity 
decreases in mature oocytes [37]

Table 3 (continued)

Gene ID Description Previous Study Method of Detection Fold Change 
in this study

NDP Norrin Cystine Knot Growth Factor Devjak et al. 2012 [20] RNAseq -2.4

NID2 Nidogen 2 Devjak et al. 2012 [20] RNAseq 5.46

NKAIN1 Sodium/Potassium Transporting ATPase Interacting 1 Devjak et al. 2012 [20] RNAseq 4.38

NOS2 Nitric Oxide Synthase 2 Yerushalmi et al. 2014 [21] RNAseq -2.48

PALLD Palladin, Cytoskeletal Associated Protein Devjak et al. 2012 [20] RNAseq -4.13

PTX3 Pentraxin 3 Zhang et al. 2005 [27] Microarray 3.08

Anderson et al. 2009 [24] RT-qPCR

SERPINE2 Serpin Family E Member 2 Feuerstein et al. 2012 [25] Microarray -4.31

Yerushalmi et al. 2014 [21] RNAseq

SFRP4 Secreted Frizzled Related Protein 4 Devjak et al. 2012 [20] RNAseq -20.39

Feuerstein et al. 2012 [25] Microarray

Yerushalmi et al. 2014 [21] RNAseq

SPOCK2 SPARC (Osteonectin), Cwcv And Kazal Like Domains Proteoglycan 2 Devjak et al. 2012 [20] RNAseq 2.88

Feuerstein et al. 2012 [25] Microarray

STAR Steroidogenic Acute Regulatory Protein Feuerstein et al. 2007 [23] RT-qPCR 2.67

Yerushalmi et al. 2014 [21] RNAseq

TLL2 Tolloid Like 2 Yerushalmi et al. 2014 [21] RNAseq -3.17

TNFSF4 TNF Superfamily Member 4 Devjak et al. 2012 [20] RNAseq -4.01

TSPAN7 Tetraspanin 7 Devjak et al. 2012 [20] RNAseq -3.3



Page 5 of 10Wyse et al. Journal of Ovarian Research          (2024) 17:227  

Incorrect Correct

Apoptosis was also attenuated 
in the MII-CC cohort, further sup-
porting decreased cell turnover 
with advanced maturity. Related path-
ways including Wnt pathway and Akt-
pathway were affected, as demon-
strated by downregulation of SFRP4, 
a potent inhibitor of Wnt signaling [24], 
and upregulation of OSMR, an activator 
of Akt-mediated proliferation [25]. 
These findings corroborate previous 
literature reporting downregulation 
of SFRP4 during oocyte maturation 
[26, 35, 36], and upregulation of OSMR 
in bovine preovulatory follicles post-
triggering by gonadotropins [37]

Apoptosis was also attenuated in the MII-
CC cohort, further supporting decreased 
cell turnover with advanced maturity. 
Related pathways including Wnt pathway 
and Akt-pathway were affected, as dem-
onstrated by downregulation of SFRP4, 
a potent inhibitor of Wnt signaling [38], 
and upregulation of OSMR, an activator 
of Akt-mediated proliferation [39]. These 
findings corroborate previous literature 
reporting downregulation of SFRP4 
during oocyte maturation [20, 40, 41], 
and upregulation of OSMR in bovine 
preovulatory follicles posttriggering 
by gonadotropins [42]

Extracellular matrix remodeling 
was also altered between the two 
maturity cohorts, as evident by mem-
bers of the matrix metalloproteinases 
(MMP) family and their inducers 
(MMP11 and SPARC1L). Again, this 
supports previous literature show-
ing significant decrease of MMP11 
in granulosa cells following hCG 
administration [38]. This effect is further 
demonstrated by increased expression 
of TNC, NID2, and SPOCK2—all ECM 
proteins and MMP substrates [26, 
39–41]. Notably, well characterized 
ECM remodeling enzymes, ADAMTS1 
and SERPINE2, were also differentially 
expressed, aligning with previous 
studies [42, 43]. Both play critical roles 
in follicular remodeling during follicular 
growth and rupture [44], by metaboliz-
ing Versican and Hyaluronan which 
lead to cumulus cell matrix expansion 
and attenuation [45]

Extracellular matrix remodeling 
was also altered between the two 
maturity cohorts, as evident by mem-
bers of the matrix metalloproteinases 
(MMP) family and their inducers (MMP11 
and SPARC1L). Again, this supports 
previous literature showing significant 
decrease of MMP11 in granulosa cells 
following hCG administration [43]. 
This effect is further demonstrated 
by increased expression of TNC, NID2, 
and SPOCK2—all ECM proteins and MMP 
substrates [20, 44–46]. Notably, well 
characterized ECM remodeling enzymes, 
ADAMTS1 and SERPINE2, were also differ-
entially expressed, aligning with previous 
studies [47, 48]. Both play critical roles 
in follicular remodeling during follicular 
growth and rupture [49], by metaboliz-
ing Versican and Hyaluronan which 
lead to cumulus cell matrix expansion 
and attenuation [50]

Another key process enhanced in folli-
cular niche maturation is inflammation, 
which is crucial for ovulation. Upon 
gonadotropin stimulation, the follicle 
wall is weakened, thereby facilitat-
ing its eventual rupture [46]. In our 
MII-CC cohort, we observed marked 
upregulation of genes associated 
with inflammation, including members 
of the Interleukin and TGF-beta families. 
Among the genes upregulated in our 
MII-CC cohort were IL18R1 which 
promotes cumulus cell expansion [47], 
and TGFBR3 which promotes cellular 
differentiation, migration, adhesion 
and extracellular matrix production [48, 
49]. IL6ST which is part of the cytokine 
receptor complex (gp130) 
was also upregulated in the MII-CC 
cohort, consistent with previous stud-
ies in non-human primates and equine 
models [50, 51]

Another key process enhanced in fol-
licular niche maturation is inflammation, 
which is crucial for ovulation. Upon 
gonadotropin stimulation, the follicle wall 
is weakened, thereby facilitating its even-
tual rupture [51]. In our MII-CC cohort, 
we observed marked upregulation 
of genes associated with inflammation, 
including members of the Interleukin 
and TGF-beta families. Among the genes 
upregulated in our MII-CC cohort were 
IL18R1 which promotes cumulus cell 
expansion [52], and TGFBR3 which 
promotes cellular differentiation, migra-
tion, adhesion and extracellular matrix 
production [53, 54]. IL6ST which is part 
of the cytokine receptor complex (gp130) 
was also upregulated in the MII-CC 
cohort, consistent with previous studies 
in non-human primates and equine 
models [55, 56]

Incorrect Correct

Key players that emerged in our cohort 
as being significant for cumulus cells 
to facilitate oocyte maturation are 
AREG, EREG, PTGS2, and STAR. Two 
factors at the heart of this complex 
process are AREG and EREG, which 
have been shown to mediate the LH 
signal driving cumulus expansion 
and oocyte maturation [19, 32, 52]. 
They also activate the EGF receptor 
(EGFR) which in turn releases matrix 
metalloproteinases (MMPs) and pro-
motes cumulus expansion [52, 53]. 
Furthermore, in conjunction with pro-
gesterone, AREG and EREG enhance 
PTGS2 (also upregulated in our MII-CC 
cohort) via EGF to increase prosta-
glandin production and maintenance 
of chromosomal spindles [33, 54–56]. In 
addition, AREG mediates hCG-induced 
STAR expression (also upregulated 
in our MII-CC cohort), which plays 
a key role in steroid and progesterone 
production in human granulosa cells 
[57], and is a potential predictive 
biomarker for nuclear maturation [58] 
and oocyte quality [33]. It is important 
to note, that despite being well defined 
as key in ovarian maturation [32, 52, 
59], EREG has not been found to be 
differentially expressed in previous 
genomic signature studies addressing 
this question. This further highlights 
the importance of our study design 
in better refining the pathophysiology 
of oocyte maturation

Key players that emerged in our cohort 
as being significant for cumulus cells 
to facilitate oocyte maturation are AREG, 
EREG, PTGS2, and STAR. Two factors 
at the heart of this complex process are 
AREG and EREG, which have been shown 
to mediate the LH signal driving cumulus 
expansion and oocyte maturation [31, 33, 
57]. They also activate the EGF receptor 
(EGFR) which in turn releases matrix 
metalloproteinases (MMPs) and promotes 
cumulus expansion [57, 58]. Further-
more, in conjunction with progesterone, 
AREG and EREG enhance PTGS2 (also 
upregulated in our MII-CC cohort) via EGF 
to increase prostaglandin production 
and maintenance of chromosomal 
spindles [32, 59–61]. In addition, AREG 
mediates hCG-induced STAR expres-
sion (also upregulated in our MII-CC 
cohort), which plays a key role in steroid 
and progesterone production in human 
granulosa cells [62], and is a poten-
tial predictive biomarker for nuclear 
maturation [23] and oocyte quality [32]. 
It is important to note, that despite being 
well defined as key in ovarian maturation 
[31, 57, 63], EREG has not been found 
to be differentially expressed in previous 
genomic signature studies addressing 
this question. This further highlights 
the importance of our study design 
in better refining the pathophysiology 
of oocyte maturation

IL1 (both alpha and beta subunits), 
which stimulates steroidogenesis, 
was upregulated in the MII-CC cohort 
with a concurrent decreased expres-
sion of FSHR in the same cohort, 
substantiating what was previously 
observed in rodents and humans [60, 
61]. BDNF, which modulates granulosa 
cell function via FSHR-coupled signal-
ing pathway, to affect aromatase-medi-
ated steroidogenesis, was also down-
regulated in our MII-CC cohort [62]

IL1 (both alpha and beta subunits), which 
stimulates steroidogenesis, was upregu-
lated in the MII-CC cohort with a con-
current decreased expression of FSHR 
in the same cohort, substantiating what 
was previously observed in rodents 
and humans [64, 65]. BDNF, which modu-
lates granulosa cell function via FSHR-
coupled signaling pathway, to affect 
aromatase-mediated steroidogenesis, 
was also downregulated in our MII-CC 
cohort [66]

HSD11B1, the enzyme responsible 
for cortisone production, an essen-
tial substrate for steroid hormone 
synthesis, was upregulated in our 
MII-CC cohort. A companion enzyme, 
HSD17B1, catalyzes the last step 
in estrogen metabolism converting E1 
of low estrogenic activity to E2 of high 
activity using cortisone as a sub-
strate [63]. HSD17B1 has not been 
captured in previous human studies, 
but was downregulated in our MII-CC 
cohort, consistent with the results 
seen in a previous bovine study [64], 
and further highlighting the advantage 
of our study design

HSD11B1, the enzyme responsible 
for cortisone production, an essential 
substrate for steroid hormone synthesis, 
was upregulated in our MII-CC cohort. 
A companion enzyme, HSD17B1, 
catalyzes the last step in estrogen 
metabolism converting E1 of low estro-
genic activity to E2 of high activity using 
cortisone as a substrate [67]. HSD17B1 
has not been captured in previous 
human studies, but was downregu-
lated in our MII-CC cohort, consistent 
with the results seen in a previous bovine 
study [68], and further highlighting 
the advantage of our study design
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Overall, apoptosis was enriched 
in downregulated genes. Interestingly, 
several major players in the regula-
tion of apoptosis, including BIRC5, 
TP53, HMGB1, HMGB2, and SFRP4 are 
also known to be regulated by LH and/
or FSH [24, 35, 65–67]

Overall, apoptosis was enriched in down-
regulated genes. Interestingly, several 
major players in the regulation of apop-
tosis, including BIRC5, TP53, HMGB1, 
HMGB2, and SFRP4 are also known to be 
regulated by LH and/or FSH [38, 40, 
69–71]

Overall, biosynthesis was enriched 
in upregulated genes among the MII-
CC cohort. Notably, several members 
of the CYP family, which were upregu-
lated, and are involved in the biosyn-
thesis of estrogen and androgens, are 
known to be regulated by LH and/
or FSH [68–70]

Overall, biosynthesis was enriched 
in upregulated genes among the MII-
CC cohort. Notably, several members 
of the CYP family, which were upregu-
lated, and are involved in the biosynthesis 
of estrogen and androgens, are known 
to be regulated by LH and/or FSH [72–74]

Finally, we show that PDE3A, known 
to improve nuclear-cytoplasmic syn-
chrony [71], is significantly upregulated 
in our MII-CC cohort. While this gene 
has not been studied in cumu-
lus cells in the context of oocyte 
maturation in humans, it has been 
shown that an increase in oocyte 
PDE3A activity causes delayed 
spontaneous meiotic maturation, 
coupled with extended gap junctional 
communication between the CC 
and the oocyte. Such a delay has a pos-
itive effect on oocyte cytoplasmic 
maturation, thereby improving oocyte 
developmental potential [72]. The fact 
that upregulation of this gene was cap-
tured by our study design speaks 
once again to the strength of our study 
and to what it adds to current literature

Finally, we show that PDE3A, known 
to improve nuclear-cytoplasmic syn-
chrony [75], is significantly upregulated 
in our MII-CC cohort. While this gene 
has not been studied in cumulus cells 
in the context of oocyte matura-
tion in humans, it has been shown 
that an increase in oocyte PDE3A activity 
causes delayed spontaneous meiotic 
maturation, coupled with extended 
gap junctional communication 
between the CC and the oocyte. Such 
a delay has a positive effect on oocyte 
cytoplasmic maturation, thereby improv-
ing oocyte developmental potential [76]. 
The fact that upregulation of this gene 
was captured by our study design speaks 
once again to the strength of our study 
and to what it adds to current literature

Methodological strengths of this 
study include (i) a sibling COC design 
allowing to minimize the biologic vari-
ability between cohorts, (ii) exploring 
transcriptomic dynamics in cumulus 
cells, which are considered valu-
able non-invasive markers for oocyte 
quality [73–75], and (iii) performing 
next generation sequencing (NGS), 
which is the most unbiased approach 
currently available for exploring tran-
scriptomic signatures
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To further explore the impact FSH and/
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with hallmark physiological and patho-
logical processes in the ovary
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