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Correction: Transcriptomics of cumulus cells =

— a window into oocyte maturation in humans
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Correction: J Ovarian Res 13, 93 (2020)
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Following publication of the original article [1], the
authors reported the below errors:

1. Reference citations in table 3 were incorrect. Correct
table 3 is shown below.

Brandon A. Wyse and Noga Fuchs Weizman should be regarded as joint First
Authors.

The original article can be found online at https://doi.org/10.1186/513048-
020-00696-7.
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Incorrect Table 3:
Table 3 Potential oocyte maturation biomarkers
Gene ID Description Previous Study Method of Detection Fold Change
in this study
ADAMTST — ADAM Metallopeptidase with Thrombospondin Type 1 Motif 1 Devjak et al. 2012 [19] RNAseq 2.27
Yerushalmi et al. 2014 [20] RNAseq
ANK2 Ankyrin 2 Devjak et al. 2012 [19] RNAseq -3.13
ANKRD57 — aka. SOWAHC, Sosondowah Ankyrin Repeat Domain Family Member C Ouandaogo et al. 2011 [21] Microarray —221
AOC2 Amine Oxidase, Copper Containing 2 Ouandaogo et al. 2011 [21] Microarray 372
AREG Amphiregulin Feuerstein et al. 2007 [22] RT-gPCR 54
BDNF Brain Derived Neurotrophic Factor Anderson et al. 2009 [23] RT-gPCR 268
BMP2 Bone Morphogenetic Protein 2 Devjak et al. 2012 [19] RNAseq 246
BUB1 BUB1 Mitotic Checkpoint Serine/Threonine Kinase Devjak et al. 2012 [19] RNAseq —428
Feuerstein et al. 2012 [24] Microarray
C10orf10  aka. DEPP1, Autophagy Regulator Devjak et al. 2012 [19] RNAseq 299
CCbC99 aka. SPDL1, Spindle Apparatus Coiled-Coil Protein 1 Devjak et al. 2012 [19] RNAseq —346
CDH3 Cadherin 3 Devjak et al. 2012 [19] RNAseq —14.26
cox2 aka. PTGS2, Prostaglandin-Endoperoxide Synthase 2 Feuerstein et al. 2007 [22] RT-gPCR 4.00
Anderson et al. 2009 [23] RT-gPCR
Wathlet et al. 2011 [25] RT-gPCR
Yerushalmi et al. 2014 [20] RNAseq
CRHBP Corticotropin Releasing Hormone Binding Protein Devjak et al. 2012 [19] RNAseq -541
DHCR24 24-Dehydrocholesterol Reductase Yerushalmi et al. 2014 [20] RNAseq 229
DSE Dermatan Sulfate Epimerase Devjak et al. 2012 [19] RNAseq -2.36
F2RL1 F2R Like Trypsin Receptor 1 Ouandaogo et al. 2011 [21] Microarray -3.06
FSHR Follicle Stimulating Hormone Receptor Yerushalmi et al. 2014 [20] RNAseq -8.13
GABRAS Gamma-Aminobutyric Acid Type A Receptor Alpha5 Subunit Devjak et al. 2012 [19] RNAseq -393
GLRA2 Glycine Receptor Alpha 2 Devjak et al. 2012 [19] RNAseq —2847
GPX Glutathione Peroxidase 3 Yerushalmi et al. 2014 [20] RNAseq —3.56
GREM1 Gremlin 1, DAN Family BMP Antagonist Anderson et al. 2009 [23] RT-gPCR -203
Yerushalmi et al. 2014 [20] RNAseq
HSDT11B1 Hydroxysteroid 11-Beta Dehydrogenase 1 Devjak et al. 2012 [19] RNAseq 295
D2 Inhibitor of DNA Binding 2 Ouandaogo et al. 2011 [21] Microarray 353
ID3 Inhibitor of DNA Binding 3 Devjak et al. 2012 [19] RNAseq -49
TGB3 Integrin Subunit Beta 3 Devjak et al. 2012 [19] RNAseq —4.05
ITPKA Inositol-Trisphosphate 3-Kinase A Wathlet et al. 2011 [25] RT-gPCR 249
LHCGR Luteinizing Hormone/Choriogonadotropin Receptor Yerushalmi et al. 2014 [20] RNAseq 3.72
MAOB Monoamine Oxidase B Devjak et al. 2012 [19] RNAseq -2.38
MGP Matrix Gla Protein Devjak et al. 2012 [19] RNAseq —-801
NDP Norrin Cystine Knot Growth Factor Devjak et al. 2012 [19] RNAseq -24
NID2 Nidogen 2 Devjak et al. 2012 [19] RNAseq 546
NKAINT Sodium/Potassium Transporting ATPase Interacting 1 Devjak et al. 2012 [19] RNAseq 4.38
NOS2 Nitric Oxide Synthase 2 Yerushalmi et al. 2014 [20] RNAseq —248
PALLD Palladin, Cytoskeletal Associated Protein Devjak et al. 2012 [19] RNAseq —4.13
PTX3 Pentraxin 3 Zhang et al. 2005 [26] Microarray 3.08
Anderson et al. 2009 [23] RT-gPCR
SERPINE2 ~ Serpin Family E Member 2 Feuerstein et al. 2012 [24] Microarray —4.31
Yerushalmi et al. 2014 [20] RNAseq
SFRP4 Secreted Frizzled Related Protein 4 Devjak et al. 2012 [19] RNAseq —20.39
Feuerstein et al. 2012 [24] Microarray
Yerushalmi et al. 2014 [20] RNAseq
SPOCK2 SPARC (Osteonectin), Cwcv And Kazal Like Domains Proteoglycan 2 Devjak et al. 2012 [19] RNAseq 2.88

Feuerstein et al. 2012 [24]

Microarray
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Table 3 (continued)

Gene ID Description Previous Study Method of Detection Fold Change
in this study

STAR Steroidogenic Acute Regulatory Protein Feuerstein et al. 2007 [22] RT-gPCR 267

Yerushalmi et al. 2014 [20] RNAseq

TLL2 Tolloid Like 2 Yerushalmi et al. 2014 [20] RNAseq -3.17

TNFSF4 TNF Superfamily Member 4 Devjak et al. 2012 [19] RNAseq —4.01

TSPAN7 Tetraspanin 7 Devjak et al. 2012 [19] RNAseq -33

Correct Table 3:

Table 3 Potential oocyte maturation biomarkers

GeneID Description Previous Study Method of Detection Fold Change
in this study

ADAMTST  ADAM Metallopeptidase with Thrombospondin Type 1 Motif 1 Devjak et al. 2012 [20] RNAseq 227

Yerushalmi et al. 2014 [21]  RNAseq
ANK2 Ankyrin 2 Devjak et al. 2012 [20] RNAseq -3.13
ANKRD57  aka. SOWAHC, Sosondowah Ankyrin Repeat Domain Family Member C  Ouandaogo et al. 2011 [22]  Microarray -2.21
AOC2 Amine Oxidase, Copper Containing 2 Ouandaogo et al. 2011 [22] Microarray 372
AREG Amphiregulin Feuerstein et al. 2007 [23] ~ RT-gPCR 54
BDNF Brain Derived Neurotrophic Factor Anderson et al. 2009 [24] RT-gPCR 268
BMP2 Bone Morphogenetic Protein 2 Devijak et al. 2012 [20] RNAseq 246
BUBI BUB1 Mitotic Checkpoint Serine/Threonine Kinase Devjak et al. 2012 [20] RNAseq -4.28

Feuerstein et al. 2012 [25] Microarray
C10orf10  aka. DEPP1, Autophagy Regulator Devjak et al. 2012 [20] RNAseq 2.99
CCDCY99  aka. SPDL1, Spindle Apparatus Coiled-Coil Protein 1 Devjak et al. 2012 [20] RNAseq -3.46
CDH3 Cadherin 3 Devijak et al. 2012 [20] RNAseq -14.26
cox2 aka. PTGS2, Prostaglandin-Endoperoxide Synthase 2 Feuerstein et al. 2007 [23]  RT-gPCR 4.00

Anderson et al. 2009 [24] RT-gPCR

Wathlet et al. 2011 [26] RT-gPCR

Yerushalmi et al. 2014 [21]  RNAseq
CRHBP Corticotropin Releasing Hormone Binding Protein Devijak et al. 2012 [20] RNAseq -541
DHCR24  24-Dehydrocholesterol Reductase Yerushalmietal. 2014 [21]  RNAseq 2.29
DSE Dermatan Sulfate Epimerase Devjak et al. 2012 [20] RNAseq -2.36
F2RL1 F2R Like Trypsin Receptor 1 Ouandaogo et al. 2011 [22] Microarray -3.06
FSHR Follicle Stimulating Hormone Receptor Yerushalmi et al. 2014 [21]  RNAseq -8.13
GABRA5 ~ Gamma-Aminobutyric Acid Type A Receptor Alpha5 Subunit Devjak et al. 2012 [20] RNAseq -393
GLRA2 Glycine Receptor Alpha 2 Devjak et al. 2012 [20] RNAseq -28.47
GPX Glutathione Peroxidase 3 Yerushalmietal. 2014 [21]  RNAseq -3.56
GREM1 Gremlin 1, DAN Family BMP Antagonist Anderson etal. 2009 [24] ~ RT-gPCR -2.03

Yerushalmi et al. 2014 [21]  RNAseq
HSD11B1  Hydroxysteroid 11-Beta Dehydrogenase 1 Devjak et al. 2012 [20] RNAseq 295
D2 Inhibitor of DNA Binding 2 Ouandaogo et al. 2011 [22] Microarray 353
ID3 Inhibitor of DNA Binding 3 Devjak et al. 2012 [20] RNAseq -4.9
[TGB3 Integrin Subunit Beta 3 Devjak et al. 2012 [20] RNAseq -4.05
ITPKA Inositol-Trisphosphate 3-Kinase A Wathlet et al. 2011 [26] RT-gPCR 249
LHCGR Luteinizing Hormone/Choriogonadotropin Receptor Yerushalmi et al. 2014 [21]  RNAseq 372
MAOB Monoamine Oxidase B Devjak et al. 2012 [20] RNAseq -2.38

MGP Matrix Gla Protein Devjak et al. 2012 [20] RNAseq -8.01
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Table 3 (continued)

GeneID Description Previous Study Method of Detection Fold Change

in this study

NDP Norrin Cystine Knot Growth Factor Devjak et al. 2012 [20] RNAseq -24

NID2 Nidogen 2 Devjak et al. 2012 [20] RNAseq 5.46

NKAINT Sodium/Potassium Transporting ATPase Interacting 1 Devijak et al. 2012 [20] RNAseq 4.38

NOS2 Nitric Oxide Synthase 2 Yerushalmi et al. 2014 [21]  RNAseq -248

PALLD Palladin, Cytoskeletal Associated Protein Devjak et al. 2012 [20] RNAseq -4.13

PTX3 Pentraxin 3 Zhang et al. 2005 [27] Microarray 3.08
Anderson et al. 2009 [24] RT-gPCR

SERPINE2 ~ Serpin Family E Member 2 Feuerstein et al. 2012 [25]  Microarray -4.31
Yerushalmi et al. 2014 [21]  RNAseq

SFRP4 Secreted Frizzled Related Protein 4 Devijak et al. 2012 [20] RNAseq -20.39
Feuerstein et al. 2012 [25]  Microarray
Yerushalmi et al. 2014 [21]  RNAseq

SPOCK2 ~ SPARC (Osteonectin), Cwcv And Kazal Like Domains Proteoglycan 2 Devjak et al. 2012 [20] RNAseq 2.88
Feuerstein et al. 2012 [25] Microarray

STAR Steroidogenic Acute Regulatory Protein Feuerstein et al. 2007 [23] ~ RT-gPCR 267
Yerushalmi et al. 2014 [21]  RNAseq

TLL2 Tolloid Like 2 Yerushalmietal. 2014 [21]  RNAseq -3.17

TNFSF4 TNF Superfamily Member 4 Devjak et al. 2012 [20] RNAseq -4.01

TSPAN7  Tetraspanin 7 Devjak et al. 2012 [20] RNAseq -33

2. Reference citations in main body text were incor- |, correct Correct

rectly cited. Correct citations were listed in the below

table.

Incorrect

Correct

Novel findings from this study enhance available literature exploring
processes that lead to synchronized oocyte maturity section:

Forty-five genes previously cor-
related with oocyte maturation
were not differentially expressed
in the current study (Supplemental
Table S4) [27]. Three thousand five
hundred and fifty-four genes

Discussion section:

Previous human oocyte maturation
studies analyzed COCs from in-vitro
maturation cycles [16, 29-33]

Forty-five genes previously correlated
with oocyte maturation were not dif-
ferentially expressed in the current
study (Supplemental Table S4) [19].
Three thousand five hundred and fifty-
four genes

Previous human oocyte maturation
studies analyzed COCs from in-vitro
maturation cycles [16, 21, 29-32]

In this study, several factors and their
regulators involved in nuclear matura-
tion and cell cycle control were dif-
ferentially expressed between cumulus
cells encapsulating oocytes of different
maturity, reiterating findings from previ-
ous studies [19, 20, 29, 34]. These
include cell cycle regulators (BIRCS,
BUB1, BUB1B, CCNA2, CCNB, CDK1,
FBXO5 MAD2L1, and PTTG1) and com-
ponents of the centromere (CENPA,
CENPE, and CENPH) [29]. In our MII-CC
cohort we observed downregulation
of MCM2-7, which form the hexam-
eric pre-replication protein complex.
This complex is involved in initiating
replication forks and recruiting other
DNA replication related proteins.

We also observed downregulation

of TOP2A, which relaxes supercoiled
and circular DNA molecules. Reinforc-
ing available literature that states

that while crucial at the Ml stage

for chromatin remodeling [21, 22], its
activity decreases in mature oocytes
[23]

In this study, several factors and their
regulators involved in nuclear maturation
and cell cycle control were differentially
expressed between cumulus cells encap-
sulating oocytes of different maturity,
reiterating findings from previous studies
[21, 22, 33, 34]. These include cell cycle
regulators (BIRC5, BUBT, BUB1B, CCNA2,
CCNB, CDK1, FBXO5 MAD2L1, and PTTGT)
and components of the centromere
(CENPA, CENPE, and CENPH) [21]]. In our
MII-CC cohort we observed downregula-
tion of MCM2-7, which form the hexam-
eric pre-replication protein complex. This
complex is involved in initiating replication
forks and recruiting other DNA replica-
tion related proteins. We also observed
downregulation of TOP2A, which relaxes
supercoiled and circular DNA molecules.
Reinforcing available literature that states
that while crucial at the Ml stage for chro-
matin remodeling [35, 36], its activity
decreases in mature oocytes [37]
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Incorrect

Correct

Incorrect

Correct

Apoptosis was also attenuated

in the MII-CC cohort, further sup-
porting decreased cell turnover

with advanced maturity. Related path-
ways including Wnt pathway and Akt-
pathway were affected, as demon-
strated by downregulation of SFRP4,

a potent inhibitor of Wnt signaling [24],
and upregulation of OSMR, an activator
of Akt-mediated proliferation [25].
These findings corroborate previous
literature reporting downregulation

of SFRP4 during oocyte maturation

[26, 35, 36], and upregulation of OSMR
in bovine preovulatory follicles post-
triggering by gonadotropins [37]

Extracellular matrix remodeling

was also altered between the two
maturity cohorts, as evident by mem-
bers of the matrix metalloproteinases
(MMP) family and their inducers
(MMP11 and SPARCTL). Again, this
supports previous literature show-

ing significant decrease of MMP11

in granulosa cells following hCG
administration [38]. This effect is further
demonstrated by increased expression
of TNC, NID2, and SPOCK2—all ECM
proteins and MMP substrates [26,
39-41]. Notably, well characterized
ECM remodeling enzymes, ADAMTS1
and SERPINE2, were also differentially
expressed, aligning with previous
studies [42, 43]. Both play critical roles
in follicular remodeling during follicular
growth and rupture [44], by metaboliz-
ing Versican and Hyaluronan which
lead to cumulus cell matrix expansion
and attenuation [45]

Another key process enhanced in folli-
cular niche maturation is inflammation,
which is crucial for ovulation. Upon
gonadotropin stimulation, the follicle
wall is weakened, thereby facilitat-

ing its eventual rupture [46]. In our
MII-CC cohort, we observed marked
upregulation of genes associated

with inflammation, including members

of the Interleukin and TGF-beta families.

Among the genes upregulated in our
MII-CC cohort were IL18R1T which
promotes cumulus cell expansion [47],
and TGFBR3 which promotes cellular
differentiation, migration, adhesion
and extracellular matrix production [48,
49]. IL6ST which is part of the cytokine
receptor complex (gp130)

was also upregulated in the MIl-CC
cohort, consistent with previous stud-
ies in non-human primates and equine
models [50, 51]

Apoptosis was also attenuated in the MIl-
CC cohort, further supporting decreased
cell turnover with advanced maturity.
Related pathways including Wnt pathway
and Akt-pathway were affected, as dem-
onstrated by downregulation of SFRP4,

a potent inhibitor of Wnt signaling [38],
and upregulation of OSMR, an activator
of Akt-mediated proliferation [39]. These
findings corroborate previous literature
reporting downregulation of SFRP4
during oocyte maturation [20, 40, 41],
and upregulation of OSMR in bovine
preovulatory follicles posttriggering

by gonadotropins [42]

Extracellular matrix remodeling

was also altered between the two
maturity cohorts, as evident by mem-
bers of the matrix metalloproteinases
(MMP) family and their inducers (MMP11
and SPARCTL). Again, this supports
previous literature showing significant
decrease of MMP11 in granulosa cells
following hCG administration [43].

This effect is further demonstrated

by increased expression of TNC, NID2,
and SPOCK2—all ECM proteins and MMP
substrates [20, 44-46]. Notably, well
characterized ECM remodeling enzymes,
ADAMTST and SERPINE2, were also differ-
entially expressed, aligning with previous
studies [47, 48]. Both play critical roles

in follicular remodeling during follicular
growth and rupture [49], by metaboliz-
ing Versican and Hyaluronan which

lead to cumulus cell matrix expansion
and attenuation [50]

Another key process enhanced in fol-
licular niche maturation is inflammation,
which is crucial for ovulation. Upon
gonadotropin stimulation, the follicle wall
is weakened, thereby facilitating its even-
tual rupture [51]. In our MII-CC cohort,
we observed marked upregulation

of genes associated with inflammation,
including members of the Interleukin
and TGF-beta families. Among the genes
upregulated in our MII-CC cohort were
IL18R1 which promotes cumulus cell
expansion [52], and TGFBR3 which
promotes cellular differentiation, migra-
tion, adhesion and extracellular matrix
production [53, 54]. IL6ST which is part
of the cytokine receptor complex (gp130)
was also upregulated in the MII-CC
cohort, consistent with previous studies
in non-human primates and equine
models [55, 56]

Key players that emerged in our cohort
as being significant for cumulus cells
to facilitate oocyte maturation are
AREG, EREG, PTGS2, and STAR. Two
factors at the heart of this complex
process are AREG and EREG, which
have been shown to mediate the LH
signal driving cumulus expansion

and oocyte maturation [19, 32, 52].
They also activate the EGF receptor
(EGFR) which in turn releases matrix
metalloproteinases (MMPs) and pro-
motes cumulus expansion [52, 53].
Furthermore, in conjunction with pro-
gesterone, AREG and EREG enhance
PTGS2 (also upregulated in our MII-CC
cohort) via EGF to increase prosta-
glandin production and maintenance
of chromosomal spindles [33, 54-56]. In
addition, AREG mediates hCG-induced
STAR expression (also upregulated

in our MII-CC cohort), which plays

a key role in steroid and progesterone
production in human granulosa cells
[57], and is a potential predictive
biomarker for nuclear maturation [58]
and oocyte quality [33]. It is important
to note, that despite being well defined
as key in ovarian maturation [32, 52,
59], EREG has not been found to be
differentially expressed in previous
genomic signature studies addressing
this question. This further highlights
the importance of our study design

in better refining the pathophysiology
of oocyte maturation

ILT (both alpha and beta subunits),
which stimulates steroidogenesis,

was upregulated in the MII-CC cohort
with a concurrent decreased expres-
sion of FSHR in the same cohort,
substantiating what was previously
observed in rodents and humans [60,
61]. BDNF, which modulates granulosa
cell function via FSHR-coupled signal-
ing pathway, to affect aromatase-medi-
ated steroidogenesis, was also down-
regulated in our MII-CC cohort [62]

HSD11B1, the enzyme responsible

for cortisone production, an essen-
tial substrate for steroid hormone
synthesis, was upregulated in our
MII-CC cohort. A companion enzyme,
HSD17B1, catalyzes the last step

in estrogen metabolism converting E1
of low estrogenic activity to E2 of high
activity using cortisone as a sub-
strate [63]. HSD17B1 has not been
captured in previous human studies,
but was downregulated in our MII-CC
cohort, consistent with the results
seen in a previous bovine study [64],
and further highlighting the advantage
of our study design

Key players that emerged in our cohort
as being significant for cumulus cells

to facilitate oocyte maturation are AREG,
EREG, PTGS2, and STAR. Two factors

at the heart of this complex process are
AREG and EREG, which have been shown
to mediate the LH signal driving cumulus
expansion and oocyte maturation [31, 33,
57]. They also activate the EGF receptor
(EGFR) which in turn releases matrix
metalloproteinases (MMPs) and promotes
cumulus expansion [57, 58]. Further-
more, in conjunction with progesterone,
AREG and EREG enhance PTGS?2 (also
upregulated in our MII-CC cohort) via EGF
to increase prostaglandin production
and maintenance of chromosomal
spindles [32, 59-61]. In addition, AREG
mediates hCG-induced STAR expres-

sion (also upregulated in our MII-CC
cohort), which plays a key role in steroid
and progesterone production in human
granulosa cells [62], and is a poten-

tial predictive biomarker for nuclear
maturation [23] and oocyte quality [32].
Itis important to note, that despite being
well defined as key in ovarian maturation
[31,57, 63], EREG has not been found

to be differentially expressed in previous
genomic signature studies addressing
this question. This further highlights

the importance of our study design

in better refining the pathophysiology

of oocyte maturation

ILT (both alpha and beta subunits), which
stimulates steroidogenesis, was upregu-
lated in the MII-CC cohort with a con-
current decreased expression of FSHR

in the same cohort, substantiating what
was previously observed in rodents

and humans [64, 65]. BDNF, which modu-
lates granulosa cell function via FSHR-
coupled signaling pathway, to affect
aromatase-mediated steroidogenesis,
was also downregulated in our MII-CC
cohort [66]

HSD11B1, the enzyme responsible

for cortisone production, an essential
substrate for steroid hormone synthesis,
was upregulated in our MII-CC cohort.
A companion enzyme, HSD17B1,
catalyzes the last step in estrogen
metabolism converting E1 of low estro-
genic activity to E2 of high activity using
cortisone as a substrate [67]. HSD17B1
has not been captured in previous
human studies, but was downregu-
lated in our MII-CC cohort, consistent
with the results seen in a previous bovine
study [68], and further highlighting

the advantage of our study design
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Incorrect

Correct

Incorrect

Correct

Overall, apoptosis was enriched

in downregulated genes. Interestingly,
several major players in the regula-
tion of apoptosis, including BIRCS,
TP53, HMGB1, HMGB2, and SFRP4 are
also known to be regulated by LH and/
or FSH [24, 35, 65-67]

Overall, biosynthesis was enriched

in upregulated genes among the MII-
CC cohort. Notably, several members
of the CYP family, which were upregu-
lated, and are involved in the biosyn-
thesis of estrogen and androgens, are
known to be regulated by LH and/

or FSH [68-70]

Finally, we show that PDE3A, known

to improve nuclear-cytoplasmic syn-
chrony [71], is significantly upregulated
in our MII-CC cohort. While this gene
has not been studied in cumu-

lus cells in the context of oocyte
maturation in humans, it has been
shown that an increase in oocyte
PDE3A activity causes delayed
spontaneous meiotic maturation,
coupled with extended gap junctional
communication between the CC

and the oocyte. Such a delay has a pos-
itive effect on oocyte cytoplasmic
maturation, thereby improving oocyte
developmental potential [72]. The fact
that upregulation of this gene was cap-
tured by our study design speaks

once again to the strength of our study
and to what it adds to current literature

Methodological strengths of this
study include (i) a sibling COC design
allowing to minimize the biologic vari-
ability between cohorts, (i) exploring
transcriptomic dynamics in cumulus
cells, which are considered valu-

able non-invasive markers for oocyte
quality [73-75], and (iii) performing
next generation sequencing (NGS),
which is the most unbiased approach
currently available for exploring tran-
scriptomic signatures

Differential expression section:

Raw trimmed reads were aligned

to Human Genome Assembly 38 (hg38)
using STAR (v2.5.3a) [77] and quantified
to RefSeq (Release 84). Low expressed
transcripts were excluded (maximum
counts < 10) and differential expression
(DE) was conducted on the remaining
counts using DESeq?2 (v3.5) [78]

Pathway analysis section:

The resulting pathway list was cross ref-
erenced with a custom gene set
created and supported by the Bader
Lab (University of Toronto) which

is comprised of all GO database, KEGG,
and Reactome gene sets (v2018-12-01)
(http://download.baderlab.org/EM_
Genesets/) [79]

Overall, apoptosis was enriched in down-
regulated genes. Interestingly, several
major players in the regulation of apop-
tosis, including BIRC5, TP53, HMGBT,
HMGB?2, and SFRP4 are also known to be
regulated by LH and/or FSH [38, 40,
69-71]

Overall, biosynthesis was enriched

in upregulated genes among the MII-

CC cohort. Notably, several members

of the CYP family, which were upregu-
lated, and are involved in the biosynthesis
of estrogen and androgens, are known

to be regulated by LH and/or FSH [72-74]

Finally, we show that PDE3A, known

to improve nuclear-cytoplasmic syn-
chrony [75], is significantly upregulated
in our MII-CC cohort. While this gene

has not been studied in cumulus cells

in the context of oocyte matura-

tion in humans, it has been shown

that an increase in oocyte PDE3A activity
causes delayed spontaneous meiotic
maturation, coupled with extended

gap junctional communication

between the CC and the oocyte. Such

a delay has a positive effect on oocyte
cytoplasmic maturation, thereby improv-
ing oocyte developmental potential [76].
The fact that upregulation of this gene
was captured by our study design speaks
once again to the strength of our study
and to what it adds to current literature

Methodological strengths of this

study include (i) a sibling COC design
allowing to minimize the biologic vari-
ability between cohorts, (i) exploring
transcriptomic dynamics in cumulus
cells, which are considered valuable
non-invasive markers for oocyte quality
[77-79], and (iii) performing next genera-
tion sequencing (NGS), which is the most
unbiased approach currently available
for exploring transcriptomic signatures

Raw trimmed reads were aligned

to Human Genome Assembly 38 (hg38)
using STAR (v2.5.3a) [81] and quantified
to RefSeq (Release 84). Low expressed
transcripts were excluded (maximum
counts < 10) and differential expression
(DE) was conducted on the remaining
counts using DESeq?2 (v3.5) [82]

The resulting pathway list was cross ref-
erenced with a custom gene set created
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