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Abstract 

Background  Poor ovarian response (POR) to controlled ovarian stimulation (COS) remains challenging, especially 
in advanced-age women with diminished ovarian reserve, resulting in low live birth rates. Many patients prefer 
to conceive with their eggs, underscoring the need for improved treatments. This study explores astaxanthin potential 
as a COS adjuvant to improve ovarian response and assisted reproductive technology (ART) outcomes, considering its 
impact on oxidative stress (OS), inflammation, and apoptosis, which are key factors in POR.

Methods  In this randomized, triple-blind, placebo-controlled trial, 60 infertile POR patients from POSEIDON Group 4 
(the poorest prognosis category, age > 35 and poor ovarian reserve (anti-müllerian hormone < 1.2 ng/ml or antral follicle 
count < 5) undergoing intracytoplasmic sperm injection were enrolled. Patients were assigned to receive either 12 mg/day 
AST or placebo for eight weeks. All patients underwent a gonadotropin-releasing hormone antagonist regimen for COS. 
ART outcomes were compared between groups. Blood serum and follicular fluid (FF) were analyzed for OS markers 
(superoxide dismutase [SOD], total antioxidant capacity [TAC], and malondialdehyde [MDA]), and pro-inflammatory 
cytokines (interleukin-6 [IL-6], interleukin-8 [IL-8], and vascular endothelial growth factor [VEGF]) via enzyme-linked 
immunosorbent assay kits, and cell-free DNA [cfDNA] (apoptotic marker) via ALU quantitative polymerase chain reaction.

Results  After the intervention, the AST group exhibited a significant elevation in serum (P = 0.013) and TAC (P = 0.030), 
accompanied by a significant reduction in serum MDA (P = 0.005). No significant differences between AST and pla-
cebo groups were observed in OS markers in FF. AST group showed significant reductions in the serum IL-6 (P < 0.001), 
IL-8 (P = 0.001), and VEGF (P = 0.002) levels following AST therapy. In the AST group, FF levels of IL-6 (P = 0 < 001), IL-8 
(P = 0.036), VEGF (P = 0.006), and cfDNA (P < 0.001) were significantly lower than in the placebo group. Between-
group comparisons showed significant differences in the alterations of serum SOD (P = 0.027), IL-6 (P < 0.001), 
and IL-8 (P = 0.035) levels between AST and placebo groups. The AST group showed significant increases in the num-
ber of retrieved oocytes (P = 0.003), MII oocytes (P = 0.004), frozen embryos (P = 0.037), and high-quality embryos 
(P = 0.014) compared to the placebo group.
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Conclusion  AST shows promise as a COS adjuvant therapy, potentially enhancing some ART outcomes in POR 
through alleviating OS, inflammation, and apoptosis.

Trial registration  Clinical trial registration number: IRCT20230223057510N1, URL: https://​irct.​behda​sht.​gov.​ir/​trial/​
68870, registration date: 2023 March 16.

Keywords  Poor ovarian response, Diminished ovarian reserve, Astaxanthin, Oxidative stress, Inflammation, Cell-free 
DNA, ART outcomes

Graphical Abstract

Introduction
Poor ovarian response (POR) poses a significant 
dilemma in the treatment of female infertility [1]. Its 
prevalence, estimated to be between 9% and 24%, is on 
the rise [2]. The success of assisted reproductive technol-
ogy (ART) depends on the quantity of retrieved oocytes, 
and an optimal response involves developing 15 folli-
cles [3, 4]. However, inadequate gonadotropin response 
during controlled ovarian stimulation (COS) results 
in poorer ART outcomes compared to normal ovarian 
responders [5]. According to the POSEIDON stratifi-
cation, POR is characterized not only by a low number 
of retrieved oocytes but also by accounting for patient 
age, ovarian reserve markers (anti-müllerian hormone 
(AMH) or antral follicle count (AFC)), and previous 
ovarian response to stimulation. This classification aims 
to identify patients at risk of poor response better and 
personalize treatment strategies [6].

Approximately one-third of patients with diminished 
ovarian reserve (DOR) encounter a poor response to 
COS [7]. Despite extensive research, POR’s precise patho-
physiological mechanisms remain elusive. Studies sug-
gest factors such as oxidative stress (OS), inflammation, 
and follicular atresia/apoptosis as potential contributors 
to its pathogenesis [8–11]. To begin with, emerging evi-
dence highlights the role of OS-induced ovarian aging in 
the development of POR. Notably, POR serves as an early 
indicator of this aging process. OS can result in damage 
to vital intracellular macromolecules such as proteins, 
lipids, and DNA [12]. Additionally, disruption of pro-
inflammatory cytokines and growth factors can adversely 
affect the interaction between FSH (Follicle-stimulating 
hormone) and its receptor (Follicle-stimulating hormone 
receptor (FSHR)), resulting in impaired proliferation and 
differentiation of granulosa cells (GCs) [9], crucial for 
oocyte development, ovulation, fertilization, and ROS 
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accumulation [13]. Lastly, elevated ROS levels damage 
cellular components and trigger cell death processes like 
apoptosis. Proper apoptosis regulation is vital for cellular 
homeostasis [14]. Ovarian cell apoptosis plays a vital role 
in the occurrence of extensive follicular atresia or regres-
sion, serving as a key mechanism in the process of ovarian 
aging. Oocyte apoptosis causes germ cell loss, while GCs 
apoptosis results in nutrient deprivation and metabolic 
disorders within the ovarian microenvironment [15]. Both 
contribute to declining ovarian function, with higher GC 
apoptosis observed in POR patients [16]. Cell-free DNA 
(cfDNA) refers to fragments of DNA that are derived from 
cellular apoptosis or necrosis and can be detected in vari-
ous bodily fluids [17], including follicular fluid (FF) [18]. 
Increased cfDNA level serve as valuable non-invasive bio-
marker for early detection and prognosis in cancers and 
severe diseases [19]. The level of cfDNA in FF serves as 
an indicator of the proportion of apoptotic and necrotic 
cells within ovarian follicles [18]. Given that the composi-
tion of FF plays a crucial role in oocyte development and 
the quality of subsequent embryos, heightened levels of 
cfDNA in FF can have detrimental effects on the devel-
opment of oocytes and embryos, potentially resulting 
in unsuccessful ART outcomes [20]. Women with poor 
ovarian reserve exhibit high concentrations of cfDNA in 
FF [21], which is attributed to the accelerated apoptosis in 
the ovary [22]. In light of the discussed content, the quan-
tification of cfDNA in FF presents a non-invasive means 
to evaluate the quality of the follicular microenvironment.

In spite of various attempted stimulation protocols and 
treatments for POR, significant improvements in ART 
outcomes have been elusive [23]. Live birth rates (LBR) 
for POR patients remain below 10%. While egg dona-
tion yields better outcomes, a significant majority of POR 
patients still desire to conceive using their own eggs. This 
persistence in seeking conception with their eggs, despite 
the limited success of certain treatment methods [23, 24] 
and the complex and time-sensitive nature of their condi-
tion [1], highlights the urgent need for a more effective 
and tailored solution for POR patients.

POR to COS drugs remains a challenge in infertility 
treatment, especially in advanced age and diminished 
ovarian reserve women. Recent interest in adjuvant treat-
ment strategies for POR has grown [25–27]. Astaxanthin 
[3,3′-dihydroxy-β, β′-carotene-4,4′-dione, (AST)], a xan-
thophyll carotenoid known as the “king of antioxidants,” 
offers promise due to its multifaceted benefits [28, 29]. 
It has shown exceptional efficacy, surpassing Coenzyme 
Q10 (CoQ10), Alpha-Lipoic Acid, and vitamin C [30]. 
Studies highlight its antioxidant, anti-inflammatory, and 
anti-apoptotic properties [29]. AST activates the Nrf2/
HO-1 pathway, enhancing antioxidant enzymes [31]. 
Because of its unique structure, ATX quenches singlet 

oxygen, scavenges free radicals, and inhibits lipid per-
oxidation, safeguarding membranes [32]. It reduces pro-
inflammatory cytokines via NF-κB and MAPK pathways 
[33]. Recent findings suggest AST’s interplay between 
Nrf2 and NF-κB pathways, where Nrf2 activation antag-
onizes NF-κB, potentially leading to anti-inflammatory 
responses [34]. It also lessens apoptosis through ERK, 
NF-κB, and PI3K/Akt pathways [35, 36].

This study aims to investigate astaxanthin’s therapeu-
tic potential as a COS adjuvant on ovarian response 
and assisted reproductive technology (ART) outcomes. 
Additionally, we will assess astaxanthin’s impact on OS, 
inflammation, and apoptotic markers.

Methods
Trial design
This clinical trial was a prospective, parallel, rand-
omized, triple-blind, and placebo-controlled study. The 
trial recruited 60 infertile patients with POR undergoing 
ART at Omid Fertility Clinic in Tehran, Iran, between 
April and August 2023. Using POSEIDON (Patient-Ori-
ented Strategies Encompassing Individualized Oocyte 
Number) criteria, the investigation defined POR. The 
POSEIDON criteria subdivide poor responders into four 
groups, offering a more detailed and personalized clas-
sification of POR by considering age, ovarian reserve 
markers (Anti-müllerian hormone (AMH) and Antral 
follicle count (AFC)), and previous response to stimula-
tion. In contrast, the Bologna criteria provide a broader 
and less specific classification. This approach allows 
for tailored treatment plans. We included only POSEI-
DON Group 4 patients in our study because this group 
represents the poorest prognosis category. By focusing 
on this subgroup, we aimed to investigate the poten-
tial benefits of our intervention in the most challenging 
cases, where improvement in outcomes would be most 
clinically significant. The inclusion criteria were: age > 35 
years, and poor ovarian reserve (anti-müllerian hormone 
(AMH) < 1.2 ng/ml, or antral follicle count (AFC) < 5) 
(indicating low prognosis group 4 following the POSEI-
DON stratification) [6]. We excluded participants who 
had ovarian surgery or chemotherapy, endocrine disor-
ders (such as diabetes, thyroid disease, polycystic ovary 
syndrome (PCOS), hyperprolactinemia), autoimmune 
disorders (such as the presence of anti-thyroid antibod-
ies), endometriosis, recurrent spontaneous abortion, 
chromosomal abnormalities, uterine cavity abnormali-
ties, tubal disorders, pelvic inflammatory disease, chronic 
infectious diseases, cancer, undergone more than three 
previous ART cycles, received hormone treatment or 
used intrauterine devices in the past three months, 
received treatment with dietary supplements and vita-
mins in the last three months, concurrent severe male 
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factor infertility (notably non-obstructive azoospermia), 
or spontaneous pregnancy during the intervention. The 
analysis enrolled POR patients with regular menstrual 
cycles.

Ethical approval
This study was performed in accordance with the prin-
ciples of the Declaration of Helsinki. The trial received 
approval from the Deputy of the Research and Ethics 
Committee of TUMS (approval date: 2023 January 01; 
code: IR.TUMS.MEDICINE.REC.1401.636). Moreo-
ver, the protocol was recorded in the Iranian Registry 
of Clinical Trials (approval date: 2023 March 16; code: 
IRCT20230223057510N1). Before participating in the 
study, all participants provided written informed consent.

Randomization and blinding
To ensure unbiased treatment allocation, an independ-
ent statistician randomly assigned eligible patients to the 
AST (n = 30) or placebo (n = 30) groups in a 1:1 ratio by 
implementing the balanced block randomization design 
with a block size of 4. The randomization list was con-
cealed using sequentially numbered, opaque envelopes. 
This triple-blind trial ensured that patients, researchers, 
embryologists, laboratory staff, and statisticians were 
unaware of the individual treatment allocation. It should 
be emphasized that the AST capsules were indistin-
guishable from the placebo capsules in size, shape, color, 
taste, and packaging. In addition, an independent party 
coded the medicinal content of each bottle with a code 
unknown to the research team. Also, outcome assess-
ments were conducted by assessors who were completely 
unaware of participant group assignments. Figure  1 

depicts patient flow across the trial in the Consolidated 
Standards of Reporting Trials (CONSORT) diagram.

Trial procedures
Infertile patients with POR undergoing intracytoplas-
mic sperm injection (ICSI) at Omid Fertility Clinic 
were enrolled if they met the inclusion criteria, which 
were evaluated by a gynecologist. All patients followed 
the standard ovarian stimulation with gonadotropin-
releasing hormone (GnRH) antagonist. The AST group 
received 12 mg of oral AST capsules per day (3 × 4 mg 
capsules; AstaZine®, BGG Europe SA., Italy) until the 
ovum pick-up (OPU) day for eight weeks, while the pla-
cebo group received three capsules containing edible 
paraffin. The intervention duration and dosage were 
based on an earlier study [37]. Prior studies indicate that 
consuming 2 to 24 mg of AST daily for at least three 
weeks offers antioxidant benefits without safety issues 
or adverse effects [38, 39]. Given the limited number of 
clinical studies investigating the effects of AST on female 
infertility and reproductive outcomes [40], our study is 
innovative, as no clinical trials have specifically explored 
AST’s effects on POR patients. Additionally, previ-
ous research has demonstrated that AST administra-
tion improves ART outcomes by increasing the number 
of mature (MII) oocytes retrieved [41–43]. The dosage 
and duration of the intervention were based on a pre-
vious randomized clinical trial, in which 12 mg/day of 
AST was administered for 60 days to women with PCOS. 
That study showed that AST enhances ART outcomes by 
elevating TAC levels in FF and modulating endoplasmic 
reticulum (ER) stress in GCs, without negatively affecting 
MDA or SOD levels, or compromising follicular health 
[37]. Furthermore, AST intake at this dosage improved 

Fig. 1  Patient flow across the trial



Page 5 of 13Shafie et al. Journal of Ovarian Research          (2024) 17:212 	

serum and FF apoptotic factor levels while modulat-
ing the expression of genes and proteins involved in 
the apoptosis pathway in GCs [44]. These studies also 
reported no adverse effects on follicular health, con-
firming that this dosage is safe and appropriate for our 
investigation. The absence of adverse effects on follicular 
health further underscores the suitability of this dosage, 
which we selected based on these promising findings. To 
monitor medication adherence and potential side effects, 
patients received weekly calls and monthly visits. Patients 
were advised to continue with their usual daily routines 
and to abstain from consuming any dietary supplements. 
The adherence rate was assessed via returned capsules on 
OPU day [45].

Blood and FF collection
Following a prior study [41], 10 ml of venous blood was 
collected pre- and post-intervention (day of OPU) to 
assess OS markers and pro-inflammatory cytokines. 
Serum obtained by centrifugation (1500 g, 10 min) was 
stored at -80 °C for analysis. To reduce the risk of blood 
contamination, FF was only collected from the first follicle 
during the OPU. After centrifugation (3000 g for 15 min), 
the FF supernatants were filtered using 0.45 μm filters to 
remove cell debris and stored at -80 °C for later analysis 
[46]. Pre-intervention serum samples were collected on 
days 2 or 3 of the follicular phase. Post-intervention serum 
samples and FF were obtained on the day of OPU, with all 
samples collected under fasting conditions.

OS markers and pro‑inflammatory cytokines
Serum (pre- and post-intervention) and FF samples were 
analyzed for OS markers (superoxide dismutase [SOD], 
total antioxidant capacity [TAC], and malondialdehyde 
[MDA]) using human enzyme-linked immunosorbent 
assay (ELISA) kits (Zellbio, GmbH, Germany), and for pro-
inflammatory cytokines (interleukin-6 [IL-6], interleukin-8 
[IL-8], and vascular endothelial growth factor [VEGF]) 
using human ELISA kits (Karmania Pars Gene Co.; KPG, 
Iran). All parameters were blindly measured twice.

CfDNA
Interestingly, measuring cfDNA levels—derived from 
apoptosis or necrosis—in FF has become a valuable diag-
nostic tool for assessing ovarian function [18, 19]. In poor 
ovarian reserve, higher cfDNA in FF is tied to accelerated 
ovarian apoptosis [47], adversely affecting ART outcomes 
[46]. CfDNA was extracted from FF using a previously 
described method [18, 48]. Quantification of total cfDNA 
utilized qPCR with ALU 115 primers. Each ALU-qPCR 
reaction included 1µL of FF, 0.25 µM forward and reverse 
ALU 115 primers, and 5 µL of 2X SYBR Green I mas-
ter mix (Amplicon, Denmark). CfDNA levels in FF were 

measured via a standard curve derived from successive 
genomic DNA dilutions [48]. Negative controls (no tem-
plate) were included, and each FF was tested in quadru-
plicate. To assess the origin of cfDNA, qPCR with ALU 
247 primers was employed to quantify necrosis-related 
fragments. The Q247/Q115 ratio, indicating the propor-
tion of cfDNA generated from necrosis over total cfDNA, 
was used to calculate cfDNA integrity [46]. If the cfDNA 
integrity falls below 0.5, it is primarily associated with 
apoptotic events; otherwise, it is predominantly linked to 
necrotic events. This study employed the following prim-
ers: ALU115 forward (5’-CCT​GAG​GTC​AGG​AGT​TCG​
AG-3’), ALU115 reverse (5’-CCC​GAG​TAG​CTG​GGA​
TTA​CA-3’), ALU247 forward (5’-GTG​GCT​CAC​GCC​
TGT​AAT​C-3’), and ALU247 reverse (5’-CAG​GCT​GGA​
GTG​CAG​TGG​-3’).

COS protocol
At Omid Fertility Clinic in Tehran, Iran, the combination 
of a GnRH antagonist protocol and whole embryo freez-
ing has proven to be the most effective method for induc-
ing ovulation in POR patients. On day 2 of the menstrual 
cycle, a combination of recombinant FSH (rFSH) (225 
IU/day, Gonal-F®, Merck Serono SA, Switzerland) and 
human menopausal gonadotrophin (HMG) (FSH 75 IU: 
LH 75 IU, 300 IU/day, HUMEGNAN®, Darou Pakhsh 
Pharmaceutical Mfg. Co., Iran) was initiated. This was 
continued up to the human chorionic gonadotropin 
(hCG) trigger. Repeated transvaginal ultrasound was 
used to monitor ovarian response and guide dose adjust-
ments. The GnRH antagonist, Cetrorelix acetate (250 µg/
day, Cetrotide, Merck Serono SA, Switzerland), was given 
once 2 or more follicles reached ≥ 14 mm in diameter. 
Cetrotide was ceased upon the attainment of a diameter 
of ≥ 18 mm in at least 2 follicles, and the final oocyte 
maturation was triggered using 10,000 IU hCG (Ovit-
relle, Merck Serono SA, Switzerland). If no ≥ 14 mm folli-
cles were observed after 8–9 days, the cycle was canceled. 
Ultrasound-guided OPU was done 36 h after the trigger. 
The standard ICSI protocol was employed for all partici-
pants. Embryos were cryopreserved on day 3 to enhance 
clinical outcomes, and 2 or 3 cleavage or blastocyst stage 
embryos were transferred two cycles later, as per estab-
lished local clinical practice. When only one embryo was 
available, a single embryo transfer (SET) was executed.

ART outcomes
In this study, the cumulus-oocyte complexes were 
stripped of cumulus cells using hyaluronidase enzyme 
(Sigma®, USA) two hours post the OPU procedure. The 
oocytes were then evaluated for maturity using a stereo 
microscope (Olympus SZX7, Tokyo, Japan) and catego-
rized as germinal vesicle (GV), metaphase I (MI), and 
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metaphase II (MII). Suitable MII oocytes were used 
for the ICSI procedure, and 16–18 h later, fertilization 
was evaluated by checking for 2 pronuclei (2 PN) and 2 
polar bodies. The study collected data from reproduc-
tive outcomes, including parameters related to ovarian 
response (such as total gonadotrophin, rFSH, and HMG 
doses, stimulation duration, the number of follicles > 16 
mm on the day of triggering, and cycle cancellation 
rate (Percentage of cycles canceled before OPU per the 
number of started cycles [49]), the number of retrieved 
oocytes, the number of MII oocytes, oocyte maturity 
rate (Percentage of normal MII oocytes per total nor-
mal retrieved oocytes [49]), fertilization rate (Percentage 
of oocytes with 2PN/2 PB, 16–18 h post-insemination 
per injected MII oocytes [50]), the number of frozen 
embryos, high-quality embryos (number of grade A and 
B cleavage embryos according to the ASEBIR (Associa-
tion for the Study of Reproductive Biology) criteria [51]), 
canceled embryo transfers (ET) due to the absence of 
usable embryos, chemical pregnancy rate (percentage of 
the pregnancies with a positive serum b-hCG test 14 days 
after ET per the number of ET cycles [52]), and clinical 
pregnancy rate (percentage of pregnancies showing con-
firmed clinical markers on ultrasound (like gestational 
sac and heart rate) per the number of ET cycles [49]). 
Furthermore, the AFC assessment was conducted pre- 
and post-intervention.

Sample size and statistical analysis
The sample size calculation was based on the mean num-
ber of MII oocytes. According to similar clinical trials 
[25, 26, 53, 54], the mean number of MII oocytes in POR 
patients was considered to be about 3.2 ± 2 in the control 
group. We anticipated a 50% increase in the mean num-
ber of MII oocytes in the intervention group. We deter-
mined that a sample size of 50 participants (25 in each 
arm) was required to detect this difference. To account 
for a 20% dropout rate, the total sample size was adjusted 
to 60 participants (30 in each group). This sample size 
ensures an 80% power to detect a significant difference 
at the 0.05 significance level. The following formula was 
applied to calculate the sample size:

Δ = |µ2-µ1| = absolute difference between two means.

k =
n2

n1
= 1

n1 =
σ 2
1
+ σ 2

2
/K z1−α/2 + z1−β

2

�2

n1 =
2
2
+ 2

2/1 (1.96+ 0.84)2

1.62

n1 = 25

n2 = K ∗ n1 = 25

σ1, σ2 = variance of mean #1 and #2
n1 = sample size for group #1
n2 = sample size for group #2
α = probability of type I error (usually 0.05)
β = probability of type II error (usually 0.2)
z = critical Z value for a given α or β
k = ratio of sample size for group #2 to group #1
Quantitative variables were presented as mean ± stand-

ard deviation (SD), and qualitative variables were pre-
sented as numbers and percentages. Qualitative variables 
were compared between the AST and placebo groups 
using Fisher’s exact and Pearson’s chi-squared tests. The 
distribution of data was assessed using the Shapiro-Wilk 
test. To compare continuous variables with a normal 
distribution between the AST and placebo groups, an 
independent sample t-test was applied. Non-normally 
distributed data were analyzed using the Mann-Whit-
ney U test. Pre- and post-intervention markers within 
each group were compared using Student’s paired 
t-test. Analysis of medication effectiveness between two 
groups was performed using a repeated-measures anal-
ysis of variance (ANOVA) model. Treatment and time 
effects and also the interaction between time and treat-
ment (time*group) were included in this model. Logistic 
regression was employed to assess ART outcomes, with 
age, AMH, and AFC included as confounding variables, 
as they are key markers of ovarian response to COS. Sta-
tistical significance is denoted by a P-value of less than 
0.05.

Results
Baseline characteristics
Presented in the CONSORT flowchart, the study encom-
passed the randomization and allocation of 60 patients. 
Ultimately, 51 participants from this cohort were 
included in the final analysis (AST group: n = 26, placebo 
group: n = 25) (Fig.  1). Importantly, no adverse effects 
or instances of toxicity were reported by the patients 
throughout the intervention. At the study’s inception, 
no significant differences emerged in age, BMI, infertil-
ity duration, menstrual cycle duration, hormonal pro-
file, AFC, and adherence rates between the two groups 
(Table 1). Primary infertility was diagnosed in the major-
ity of patients in both groups. Additionally, the predomi-
nant stage of embryos transferred in both the AST and 
placebo groups was the blastocyst stage.

Serum and FF OS markers and pro‑inflammatory cytokines
At baseline, the serum levels of markers displayed no 
significant differences between the AST and placebo 
groups. After the intervention, the AST group exhibited 
a significant increase in serum SOD (P = 0.013) and TAC 
(P = 0.030), along with a significant reduction in serum 
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MDA (P = 0.005). However, the placebo group showed 
no significant changes in marker levels after the interven-
tion. Between-group comparisons showed a statistically 
significant difference in the alterations of serum SOD 
levels between the AST and placebo groups (P = 0.027). 
No significant differences were observed in alterations 
of serum levels of TAC (P = 0.246) and MDA (P = 0.261) 
between the AST and placebo groups (Table  2). The FF 
levels of SOD (P = 0.607), TAC (P = 0.792), and MDA 
(P = 0.887) exhibited no significant differences when 
comparing the AST group to the placebo group (Table 3).

The results of pro-inflammatory cytokines indicated 
significant reductions in serum IL-6 (P < 0.001), IL-8 
(P = 0.001), and VEGF (P = 0.002) following AST ther-
apy in the AST group. However, no significant changes 

in cytokines levels were observed in the placebo group. 
Between-group comparisons showed statistically sig-
nificant differences in the alterations of serum IL-6 and 
IL-8 levels between the groups (P < 0.001 and P = 0.035, 
respectively). No significant difference was observed in 
the alteration of VEGF (P = 0.071) between the AST and 
placebo groups (Table 2). Additionally, in the AST group, 
FF levels of IL-6 (P = 0 < 001), IL-8 (P = 0.036), and VEGF 
(P = 0.006) were significantly lower than in the placebo 
group (Table 3).

FF cfDNA
AST supplementation significantly reduced cfDNA lev-
els, as measured by ALU115 qPCR (P < 0.001), without 

Table 1  Baseline characteristics of the participants

AST astaxanthin group, BMI body mass index [weight (kg)/height (m2)], AMH anti-müllerian hormone, FSH follicle-stimulating hormone, LH luteinizing hormone, 
E2 estradiol, P4 progesterone, PRL prolactin, AFC antral follicle count, Adherence rate (Number of dosage units dispensed − number of dosage units remained)/ 
(prescribed number of dosage unit per day × number of days between 2 visits), n number. Table values represent either mean ± SD or number (percentages). 
Statistical significance is denoted by a P-value of less than 0.05

Variables AST (n = 26) Placebo (n = 25) P-value

Age (years) 38.42 ± 1.79 38.32 ± 1.67 0.811

BMI (kg/m2) 22.59 ± 1.25 22.46 ± 1.53 0.729

Infertility duration (years) 3.31 ± 1.25 2.88 ± 1.42 0.223

Primary infertility, n (%) 20/26 (76.9%) 17/25 (68.0%) 0.475

Menstrual cycle duration 26.96 ± 3.38 27.44 ± 3.64 0.629

AMH (µg/mL) 0.75 ± 0.16 0.71 ± 0.21 0.368

FSH (mIU/mL) 9.87 ± 1.76 9.95 ± 2.11 0.880

LH (mIU/mL) 4.76 ± 1.17 4.56 ± 1.09 0.523

E2 (pg/mL) 71.63 ± 26.14 68.27 ± 21.89 0.678

P4 (ng/mL) 0.59 ± 0.37 0.53 ± 0.39 0.421

PRL (mIU/L) 200.15 ± 34.50 186.56 ± 28.37 0.132

AFC (n) 4.38 ± 1.41 4.12 ± 1.166 0.365

Adherence rate (%) 98.80 ± 2.01 98.73 ± 2.20 0.945

Blastocyst stage embryo transfer (%) 18/24 (75%) 15/23 (65.2%) 0.464

Table 2  Comparison of pre- and post-intervention serum levels of OS markers and inflammatory cytokines between AST and placebo 
groups

AST Astaxanthin group, SOD superoxide dismutase, TAC​ total antioxidant capacity, MDA malondialdehyde, IL-6 interleukin 6, IL-8 interleukin 8, VEGF vascular 
endothelial growth factor. Table values represent mean ± SD. Statistical significance is denoted by a P-value of less than 0.05 (*P < 0.05)

AST (n = 26) Placebo (n = 25)
Variables Pre-

intervention 
serum levels

Post-
intervention 
serum levels

Paired P-value Pre-intervention 
serum levels

Post-
intervention 
serum levels

Paired P-value P-value 
between 
groups

SOD (U/ml) 14.97 ± 2.26 16.26 ± 2.22 0.013* 15.28 ± 2.01 14.59 ± 3.59 0.351 0.027*

TAC (µmol/L) 892.50 ± 81.77 910.05 ± 92.56 0.030* 918.73 ± 127.35 889.06 ± 203.20 0.468 0.246

MDA (µmol/L) 16.82 ± 1.22 16.19 ± 1.27 0.005* 16.74 ± 1.44 16.43 ± 1.64 0.135 0.261

Il-6 (pg/ml) 1.74 ± 0.33 1.25 ± 0.32 0.000* 1.61 ± 0.33 1.67 ± 0.30 0.098 0.000*

Il-8 (pg/ml) 14.62 ± 1.87 13.38 ± 1.65 0.001* 14.58 ± 2.22 14.28 ± 2.55 0.323 0.035*

VEGF (pg/ml) 13.20 ± 2.96 12.37 ± 2.87 0.002* 12.71 ± 3.19 12.43 ± 3.20 0.123 0.071
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affecting ALU247 levels (P = 0.133) compared to the pla-
cebo group. Furthermore, cfDNA integrity significantly 
increased in the AST group compared to the placebo 
group (P = 0.014). The mean Q247/Q115 ratio in FF sam-
ples was 0.48 ± 0.14 in the AST group and 0.38 ± 0.13 in 
the placebo group, suggesting that the analyzed cfDNA 
predominantly originates from cellular apoptosis.

Ovarian stimulation parameters and ART outcomes
The AST group showed a significant increase in the 
number of retrieved oocytes (P = 0.003), MII oocytes 

(P = 0.004), frozen embryos (P = 0.037), and high-
quality embryos (P = 0.014) compared to the placebo 
group. Notably, other factors such as total gonado-
trophin (P = 0.207), rFSH (P = 0.149), and HMG doses 
(P = 0.299), stimulation duration (P = 0.149), the num-
ber of follicles > 16 mm (P = 0.186), oocyte maturity 
rate (P = 0.089), fertilization rate (P = 0.973), canceled 
ET (P = 0.682), chemical pregnancy rate (P = 0.995), 
and clinical pregnancy rate (P = 0.695), showed no sig-
nificant changes between the AST and placebo groups 
(Table  4). Also, The cycle cancellation rate showed no 

Table 3  Comparison of FF levels of OS markers, inflammatory cytokines, and cfDNA between AST and placebo groups

AST astaxanthin group, SOD superoxide dismutase, TAC​ total antioxidant capacity, MDA malondialdehyde, IL-6 interleukin 6, IL-8 interleukin 8, VEGF vascular endothelial 
growth factor, cfDNA Cell-free DNA, FF follicular fluid. Table values represent mean ± SD. Statistical significance is denoted by a P-value of less than 0.05 (*P < 0.05)

Variables AST (n = 26), FF levels Placebo (n = 25), FF levels P-value

SOD (U/ml) 14.49 ± 2.12 14.83 ± 2.60 0.607

TAC (µmol/L) 816.18± 126.06 835.71 ± 149.95 0.792

MDA (µmol/L) 12.94 ± 1.16 13.32 ± 2.05 0.887

Il-6 (pg/ml) 2.05± 0.60 2.98 ± 1.02 0.000*

Il-8 (pg/ml) 24.52 ± 3.68 28.66 ± 8.74 0.036*

VEGF (pg/ml) 11.04 ± 2.06 13.16 ± 3.02 0.006*

CfDNA level (ALU115) (ng/µl) 0.39± 0.12 0.60± 0.17 0.000*

ALU247 (ng/µl) 0.18± 0.07 0.21± 0.07 0.133

CfDNA integrity (ALU 247/ ALU 115) 0.48±0.14 0.38±0.13 0.014*

Table 4  Comparison of ART cycle stimulation parameters, embryology, and clinical reproductive outcomes between AST and placebo 
groups

AST Astaxanthin group, rFSH recombinant follicle-stimulating hormone, HMG human menopausal gonadotropin, GV germinal vesicle, MI metaphase I, MII metaphase 
II, ET embryo transfer, n Number. Table values represent either mean ±SD or number (percentages). #Logistic regression adjusted for age, AMH, and AFC as confounding 
variables. Statistical significance is denoted by aP-value of less than 0.05 (*P < 0.05)

Variables AST (n = 26) Placebo (n = 25) P-value#

Total gonadotrophin doses (IU) 5648.08 ± 623.816 5862.00 ± 653.00 0.207

rFSH doses (IU) 2423.08 ± 232.155 2520.00 ± 243.02 0.149

HMG dose (IU) 3225.00 ± 453.486 3342.00 ± 427.61 0.299

Stimulation duration (days) 10.77 ± 1.03 11.20 ± 1.08 0.149

Number of follicles >16mm 4.42 ± 1.33 3.96 ± 1.13 0.186

Retrieved oocytes (n) 4.38 ± 1.35 3.36 ± 1.03 0.003*

GV (n) 0.73 ± 0.60 0.88 ± 0.60 0.188

MI (n) 0.27 ± 0.45 0.32 ± 0.47 0.723

MII (n) 3.38 ± 1.44 2.16 ± 0.89 0.004*

Oocyte maturity rate (MII %) 75.64 ± 17.03 66.00 ± 22.02 0.089

Fertilization rate (%) 89.74 ± 15.33 90.33 ± 16.25 0.973

Frozen embryos (n) 2.73 ± 1.61 1.80 ± 0.86 0.037*

High-quality embryos (n) 2.62 ± 1.41 1.64 ± 0.75 0.014*

Transferred embryos (n) 1.73 ± 0.66 1.68 ± 0.74 0.776

Canceled ET, n (%) 2/26 (7.7%) 2/25 (8.0%) 0.682

Chemical pregnancy rate, n (%) 9/24 (37.5%) 8/23 (34.8%) 0.995

Clinical pregnancy rate, n (%) 5/24 (20.8%) 4/23 (17.4%) 0.695
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significant difference between the AST group (3/29, 
10.3%) and the placebo group (4/29, 13.8%) (P = 1.000). 
Furthermore, the pre- and post-intervention changes 
in AFC did not significantly differ between the AST 
(4.38 ± 1.41 vs. 4.42 ± 1.33; P = 0.788) and placebo 
groups (4.12 ± 1.16 vs. 4.00 ± 1.15; P = 0.083) (P-value 
between groups = 0.321).

Discussion
The pathophysiology of POR primarily stems from the 
limited number of follicles that respond to COS [55]. 
This leads to fewer retrieved oocytes, lower chances of 
conception, and a higher risk of cycle cancellation [56]. 
OS, inflammation, and apoptosis are key contributors 
to this condition [8–11]. OS, in particular, accelerates 
ovarian aging and damages critical macromolecules, 
impairing oocyte quality, embryo development, and 
implantation [57]. Pro-inflammatory cytokines disrupt 
the function of GCs, which are crucial for oocyte mat-
uration, further exacerbating POR through impaired 
FSH signaling [9]. Elevated levels of ROS also pro-
mote apoptosis in oocytes and GCs, worsening ovar-
ian function [14]. While various stimulation protocols 
and adjuvant treatments have been explored, signifi-
cant improvements in ART outcomes for POR patients 
remain limited [56]. Astaxanthin, with its potent anti-
oxidant, anti-inflammatory, and anti-apoptotic prop-
erties, may help improve POR [29]. To explore this, 
we conducted a randomized, triple-blind, placebo-
controlled trial with POR patients, assessing astax-
anthin’s role as a COS adjuvant on ovarian response, 
ART outcomes, and markers of OS, inflammation, and 
apoptosis.

Antioxidant supplementation holds considerable 
promise in mitigating the detrimental effects of OS 
on oocyte and embryo quality in patients with POR [8, 
58–60]. In this trial, AST therapy demonstrated remark-
able advancements in oocyte quantity and maturity, the 
number of frozen embryos, and high-quality embryos. 
Our study results suggest that AST has the potential to 
enhance the FF quality, a critical factor in oocyte devel-
opment. We hypothesized that mitigating OS, reduc-
ing inflammation, and inhibiting apoptosis, all linked to 
POR, could achieve this improvement. Consequently, 
these effects likely result in the production of higher-
quality oocytes, subsequently leading to the development 
of high-quality embryos and an overall improvement in 
other ART outcomes. On the other hand, the fertilization 
rate between the two groups was similar. It’s important 
to note that even when excluding male factor patients, 
sperm quality can still influence the fertilization pro-
cess. No significant differences were observed in ovarian 
response parameters, oocyte maturity rate, canceled ET, 

pregnancy outcomes, and AFC. Further research with a 
larger sample size is warranted to explore the impact of 
varying AST dosages and treatment durations, which 
could potentially yield different outcomes regarding asta-
xanthin’s effectiveness. The findings from this study are 
consistent with our prior clinical trials involving PCOS 
and endometriosis patients [37, 41]. Similar results were 
seen with CoQ10 therapy in a trial for POR patients [26].

In our trial, serum levels of all OS markers were 
improved in the AST group. There was a statistically 
significant difference in the alterations of serum SOD 
levels between the groups, but not in TAC and MDA 
levels. However, FF levels of OS markers did not change 
between the two groups. Results align with earlier RCTs, 
showing AST supplementation’s positive impact on OS 
in overweight/obese individuals [61, 62]. Our previous 
studies demonstrated increased TAC levels in PCOS 
patients’ FF, while SOD and MDA showed no significant 
changes following AST supplementation [37]. Likewise, 
in endometriosis patients, AST elevated serum SOD and 
TAC levels and reduced MDA, but no significant changes 
in OS markers were observed in the FF [41].

Notably, AST was found to significantly decrease IL-6, 
IL-8, and VEGF levels both in the serum and FF of the 
AST group. There were statistically significant differences 
in the alterations of serum IL-6 and IL-8 levels between 
the groups, but not in VEGF levels. Reports indicate 
that IL-6 reduces follicular aromatase activity, leading to 
lower E2 levels and negatively affecting fertility and fer-
tilizing capacity [8]. Additionally, IL-8 attracts and acti-
vates leukocytes and macrophages, intensifying OS by 
promoting ROS production [63]. Schafer et al.’s findings 
support a positive association between OS and VEGF 
gene expression [64]. Our study concurs with earlier 
research, highlighting AST’s ability to reduce pro-inflam-
matory cytokine levels in the serum and FF of endome-
triosis patients [41]. Meanwhile, AST has demonstrated 
the ability to regulate essential pro-inflammatory fac-
tors, including IL-1β, IL-6, IL-8, VEGF, and TNF-α [65, 
66]. In 2016, Nuñez-Calonge et  al. reported increased 
OS markers and pro-inflammatory cytokines (IL-6, IL-8, 
VEGF) in FF of low ovarian response patients, along 
with reduced antioxidant enzyme activity [8]. Taghavi 
et al. also observed elevated IL-6 and IL-8 levels in POR 
women compared to normal responders [9]. However, 
our findings highlight the potential of AST in promoting 
antioxidant balance and combating OS and inflammation 
associated with POR

In the current study, the observed significant reduction 
in cfDNA levels (ALU115) and the significant increase in 
cfDNA integrity, accompanied by an unchanged ALU247 
level (a marker of necrosis) following AST therapy, sug-
gest that AST’s anti-apoptotic effects may contribute to 
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these changes. OS-induced apoptosis in follicles and GCs 
can lead to the release of cfDNA into the FF [46, 67]. 
Also, apoptosis-induced cell debris continues to affect 
the ovarian microenvironment by increasing cfDNA 
levels, which stimulates intracellular ROS production 
and intensifies apoptosis [68]. The association between 
cfDNA levels in FF and ovarian reserve is of notable sig-
nificance. Moreover, increased cfDNA in FF is linked to 
POR, and reduced oocyte and embryo quantity/quality, 
leading to poor ART outcomes [46, 68]. In a 2019 study 
by Nagireddy et  al., serum cfDNA levels in low ovar-
ian responders correlated positively with FSH levels and 
negatively with AFC and AMH levels [69]. In our 2021 
experiment, AST reduced OS and showed a modest 
decrease in the rate of apoptosis in the GCs of a PCOS 
mouse model, and activated the PI3K/AKT pathway [70]. 
Besides, in a 2023 clinical trial, AST suppressed GCs 
apoptosis triggered by endoplasmic reticulum stress in 
PCOS patients [37]. Indeed, the evidence consistently 
confirms AST’s capacity to inhibit apoptosis induced by 
OS [71]. This aligns with the recent trial in POR patients, 
where AST demonstrated the ability to decrease cfDNA 
levels in FF, possibly by countering OS-induced apopto-
sis through its antioxidant and anti-apoptotic properties. 
However, additional research is needed to assess cfDNA 
levels in serum following AST therapy.

Given the limited number of clinical studies inves-
tigating the effects of AST on female infertility and 
reproductive outcomes [40], our study is innovative, 
as no clinical trials have specifically explored AST’s 
effects on POR patients. To the best of our knowledge, 
this marks the first randomized, triple-blind, placebo-
controlled clinical trial investigating the impact of AST 
supplementation on OS markers, pro-inflammatory 
cytokines, cfDNA, and ART outcomes in POR patients. 
Our research’s strength lies in assessing a homogene-
ous (Group 4, according to the POSEIDON stratifica-
tion, representing the poorest prognosis category), 
nationwide group of POR patients who underwent 
consistent treatment procedures. In addition, we chose 
cfDNA as an apoptosis biomarker in FF due to its strong 
link to cellular death. Moreover, cfDNA offers several 
advantages over other apoptotic markers, including its 
stability, ease of quantification, and potential as a non-
invasive biomarker. Furthermore, FF cfDNA may serve 
as a novel indicator of follicular microenvironment 
quality [46]. It is pertinent to highlight that our study 
had some limitations. To achieve a more robust analysis 
of pregnancy outcomes, a larger sample size is impera-
tive. Unfortunately, we were unable to evaluate the LBR, 
a crucial ART success indicator, due to time constraints. 
Additionally, the study did not assess serum cfDNA lev-
els and focused on frozen ICSI cycles.

Conclusion
In conclusion, AST demonstrates promise as an adju-
vant therapy in COS for patients with POR. Our findings 
suggest that AST supplementation may improve ART 
outcomes, including an increased number of retrieved 
oocytes, MII oocytes, frozen embryos, and high-qual-
ity embryos. These improvements are likely mediated 
through the mitigation of OS (evidenced by elevated 
SOD and TAC levels and reduced MDA), the reduction 
of inflammatory markers (IL-6, IL-8, VEGF), and the sup-
pression of apoptotic activity (as indicated by decreased 
cfDNA levels).
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