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Abstract
Background  The relationship between Metabolic Syndrome (MetS) and ovarian dysfunction has been widely 
reported in observational studies, yet it remains not fully understood. This study employs genetic prediction methods 
and utilizes summary data from genome-wide association studies (GWAS) to investigate this causal link.

Methods  We employed a bidirectional two-sample Mendelian Randomization (MR) analysis utilizing MetS and 
ovarian dysfunction summary data from GWAS. Inverse variance weighted (IVW) was employed as the primary MR 
method, supplemented by Weighted Median, Weighted Mode, and MR-Egger methods. The robustness of the results 
was further assessed through sensitivity analyses including MR-Egger regression, MR-PRESSO, Cochran’s Q, and leave-
one-out test.

Results  Our MR analysis identified a causal relationship between genetically determined insulin resistance (OR = 0.26, 
95% CI: 0.08–0.89, P = 0.03), waist circumference (OR = 2.14, 95% CI: 1.45–3.15, P < 0.001), BMI (OR = 2.1, 95% CI: 
1.56–2.83, P < 0.001) and ovarian dysfunction. Conversely, reverse MR analysis confirmed causal effects of ovarian 
dysfunction on metabolic syndrome (OR = 0.98, 95% CI: 0.97–0.99, P < 0.001) and waist circumference (OR = 0.99, 95% 
CI: 0.98–0.99, P = 0.02). The results of MR-Egger regression test indicated that the whole analysis was not affected by 
horizontal pleiotropy. Additionally, the MR-PRESSO test identified outliers in SNPs, but after removal of outliers, results 
remained unchanged.

Conclusion  This study reveals a bidirectional causal connection between metabolic syndrome and ovarian 
dysfunction via genetic prediction methods. These findings are crucial for advancing our understanding of the 
interactions between these conditions and developing strategies for prevention and treatment.
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Background
Ovarian dysfunction is a prevalent issue in women’s 
reproductive health, affecting approximately 26% of 
patients undergoing assisted reproductive treatments, 
who are diagnosed with diminished ovarian reserve. The 
prevalence of these conditions is increasing, and the age 
of onset is decreasing [1]. Ovarian dysfunction is char-
acterized by the reduced ovarian function, which, if left 
untreated, can progress to ovarian atrophy and ultimately 
lead to premature ovarian failure. This progression is 
associated with significant risks, including infertility, 
cardiovascular diseases, and increased mortality [2, 3]. 
Current interventions for ovarian dysfunction, such as 
hormone replacement therapy, oral contraceptives, ovu-
lation induction therapies, and assisted reproductive 
technologies, are often hindered by long-term side effects 
[4]. While metabolic syndrome has been linked to both 
ovarian dysfunction and primary ovarian failure, the pre-
cise causal mechanisms remain elusive.

Metabolic syndrome encompasses a group of meta-
bolic disorders including obesity, hypertension, hyper-
glycemia, and dyslipidemia [5]. Clinical observational 
studies have consistently demonstrated a correlation 
between metabolic syndrome and conditions such as 
ovarian dysfunction and premature ovarian failure. Spe-
cifically, individuals with ovarian dysfunction frequently 
present with symptoms typical of metabolic syndrome, 
such as increased waist circumference, elevated fasting 
blood glucose (FBG) levels, and high triglyceride levels 
[6]. These observations underscore metabolic syndrome 
as a potential major contributor to ovarian dysfunction. 
Additionally, ovarian dysfunction could promote meta-
bolic syndrome by impacting hormone secretion, inflam-
matory response, and oxidative stress pathways [2]. This 
suggests a possible bidirectional relationship between 
ovarian dysfunction and metabolic syndrome. Neverthe-
less, these studies are observational in nature, limiting 
their ability to definitively establish causality between 
ovarian dysfunction and metabolic syndrome.

Mendelian Randomization (MR) serves as a power-
ful tool for exploring causal relationships in diseases, 
utilizing the associations between genetic variants and 
exposure factors to mimic randomized controlled trials 
[7]. This method effectively reduces the interference of 
confounding factors and enables a more accurate assess-
ment of the impact of exposure factors on diseases. Pre-
vious research has confirmed genetic causal associations 
between inflammatory regulators [8], gut microbiota 
[9], autoimmune diseases [10], and ovarian dysfunction 
using the MR method, validating the reliability of MR 
in exploring risk factors for ovarian dysfunction. This 
study employs a bidirectional MR approach to elucidate 
the causal relationships of metabolic syndrome, waist 
circumference, insulin resistance, FBG, high-density 

lipoprotein cholesterol, and triglycerides, and ovarian 
dysfunction. And by doing so, it aims to provide new 
insights and scientific evidence regarding the association 
between metabolic syndrome components, such as insu-
lin resistance, FBG, HDL levels, and triglycerides, and 
ovarian dysfunction, thereby contributing to the devel-
opment of targeted prevention and treatment strategies 
with significant clinical value.

Methods
Study design
As depicted in Supplementary Fig. 1, our study employs 
a bidirectional two-sample MR design. We use exposure 
factors such as metabolic syndrome, waist circumfer-
ence, body mass index (BMI), insulin resistance, FBG, 
high-density lipoprotein cholesterol (HDL-C), and tri-
glycerides, with ovarian dysfunction and primary ovar-
ian failure as the outcome variables for bidirectional 
MR analysis. The MR analysis adheres to three core 
assumptions [11]. The required GWAS summary data are 
sourced from public databases, which require no addi-
tional ethical approval.

Data sources
The GWAS summary data for ovarian dysfunction and 
primary ovarian failure are derived from the FinnGen 
cohort. Specifically, the ovarian dysfunction dataset com-
prises 254 cases and 118,228 controls of European ances-
try, with a total of 16,379,677 SNPs. Ovarian dysfunction 
in this study is defined according to ICD-10 code E28, 
which includes various conditions such as polycys-
tic ovary syndrome, primary ovarian failure, estrogen 
excess, androgen excess, and other ovarian dysfunctions, 
excluding isolated gonadotropin deficiency, postproce-
dural ovarian failure, and certain other specific disorders. 
For primary ovarian failure, defined according to ICD-10 
code E28.3, the dataset includes 942 cases matched with 
an equal number of controls, encompassing 16,379,685 
SNPs. Additionally, the UK Biobank provides GWAS 
summary data for metabolic syndrome, featuring 59,677 
cases and 231,430 controls [12]. The harmonized NCEP 
criteria for metabolic syndrome include the pres-
ence of at least three of the following five conditions: 
blood pressure ≥ 130/85 mmHg or on antihypertensive 
treatment; FBG ≥ 6.1 mmol/L or on glucose-lowering 
treatment; triglyceride levels ≥ 1.7 mmol/L; waist circum-
ference > 102  cm in men, > 88  cm in women; HDL cho-
lesterol levels below 1.0 mmol/L in men and below 1.3 
mmol/L in women [12]. GWAS data for waist circumfer-
ence [13], BMI, insulin resistance [14], FBG [15], HDL 
cholesterol, and triglycerides [16] involve significant 
cohorts of 407,661, 461,460, 53,334, 200,622, 94,595, and 
94,595 individuals of European descent, respectively, as 
detailed in Supplementary Table 1.



Page 3 of 10He et al. Journal of Ovarian Research           (2025) 18:50 

Instrumental variable (IV) selection
In this study, the selection of IVs adheres to rigorous cri-
teria: First, we select SNPs that are significantly associ-
ated with the metabolic syndrome genome-wide, i.e., 
with P less than 5 × 10^-8 [17]. For insulin resistance 
where suitable SNPs are challenging to identify, the selec-
tion criterion is relaxed to P less than 5 × 10^-6. SNPs 
must also exhibit a minor allele frequency (MAF) greater 
than 0.01. To mitigate the effects of linkage disequilib-
rium (LD) between SNPs, we apply a criterion of R² less 
than 0.001 within a window size of 10,000kb [18]. If an IV 
does not exist in the outcome’s summary data, we iden-
tify a proxy SNP with high LD (R² greater than 0.8) with 
the IV [19]. Furthermore, we calculate the F-value of each 
SNP in the IV to assess the strength of the IV and elim-
inate the risk of weak instrument bias. The formula for 
F-value is: F = R²(N-2)/(1-R²), where R² is the proportion 
of exposure variance explained by the IV, and the F-value 
must be greater than 10 [20].

MR analysis
The primary method of analysis in this study is the 
Inverse Variance Weighted (IVW) method, which eval-
uates the causal relationship between exposure and 
outcome by calculating the odds ratio (OR) and 95% con-
fidence interval (CI) [21]. The IVW method computes a 
weighted average of effect sizes, using the inverse vari-
ance of each SNP as a weight. To ensure robustness, addi-
tional methods such as MR-Egger [22], weighted median 
[23], and weighted mode method [24] are employed. The 
MR-Egger method incorporates an intercept term, allow-
ing for the estimation of accurate causal effects even in 
the presence of pleiotropy. The weighted median method, 
which assumes that at least half of the instruments 
are valid, is specifically used to analyze the causal link 
between exposure and outcome. All analyses are con-
ducted by R (version 4.0.5) using the “TwoSampleMR” 
package (version 0.5.6, ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​m​r​c​i​​e​u​​/​T​w​o​S​
a​m​p​l​e​M​R) [25], and results are visualized through scatter 
plots and sensitivity analysis graphs.

Sensitivity analysis
Sensitivity analysis is crucial for detecting potential het-
erogeneity and pleiotropy in MR studies. Cochran’s Q 
test assesses heterogeneity among IVs, with P greater 
than 0.05 suggesting low heterogeneity [26]. The MR-
Egger regression is employed to investigate horizontal 
pleiotropy; an intercept term close to zero or not statis-
tically significant indicates an absence of pleiotropy bias 
[22]. Furthermore, the MR Pleiotropy Residual Sum and 
Outlier (MR-PRESSO) method is utilized to identify 
potential outliers, specifically SNPs with P less than 0.05 
[27]. After removing these outliers, the causal association 
is re-estimated to correct for any horizontal pleiotropy. 

Leave-one-out analysis is employed to identify and miti-
gate the influence of outliers or individual variants that 
may affect the overall analysis.

Results
Causal effects of metabolic syndrome on primary ovarian 
failure and ovarian dysfunction
In our MR analysis, we utilized exposure factors such as 
metabolic syndrome, waist circumference, BMI, insulin 
resistance, FBG, HDL-C, and triglycerides. The number 
of IVs for these factors were 85, 329, 457, 18, 66, 87, and 
54 respectively. During the analysis of primary ovarian 
failure as an outcome, there were mismatches in the sum-
mary data, with 2, 9, 3, 0, 0, 0, and 0 SNPs respectively. To 
mitigate this, we substituted rs7755248 for rs10945840 
in the metabolic syndrome analysis, and rs34020954, 
rs1861410, rs77483079 for rs146322930, rs4671328, and 
rs4790841 in waist circumference; rs57086307 replaced 
rs58925536 in FBG, rs247617 substituted rs247616 in 
HDL-C, and rs247617, rs9297994 replaced rs247616, 
rs4738684 in triglycerides. In cases analyzing ovarian 
dysfunction, there were mismatches in 9 and 3 SNPs for 
waist circumference and BMI, respectively, with no suit-
able proxy SNPs found. All F-statistics were greater than 
10, confirming the effectiveness of the IVs. All the IVs 
were detailed in Supplementary Tables 2–9.

The results of IVW revealed significant causal asso-
ciations. Insulin resistance demonstrated an OR of 0.26 
(95% CI: 0.08–0.89, P = 0.03), waist circumference an OR 
of 2.14 (95% CI: 1.45–3.15, P < 0.001), and BMI an OR of 
2.1 (95% CI: 1.56–2.83, P < 0.001) with the risk of primary 
ovarian failure and ovarian dysfunction respectively 
(Table  1; Fig.  1). Specifically, the analyses for waist cir-
cumference, using both MR-Egger and Weighted Median 
methods, confirmed a statistical correlation with ovar-
ian dysfunction. For BMI, MR-Egger, Weighted Median, 
and Weighted Mode methods all indicated consistent 
causal associations. Additionally, analyses for HDL-C 
using MR-Egger, Weighted Median, and Weighted Mode 
methods also found a statistical association with ovarian 
dysfunction (Table 1). For other exposure-outcome com-
binations, no statistically significant associations were 
observed (Table 1).

The robustness of our results is supported by several 
tests: Cochran’s Q test indicated no significant heteroge-
neity and MR-Egger regression test showed no pleiotropy 
(Supplementary Table 10, Supplementary Fig.  2A-C). 
MR-PRESSO analysis did not identify any outliers, and 
MR-PRESSO global test revealed no horizontal pleiot-
ropy (Supplementary Table 11). Furthermore, the leave-
one-out test demonstrated that the links were not driven 
by single SNPs (Supplementary Fig.  2D-F). These tests 
confirmed the robustness of our MR analysis.

https://github.com/mrcieu/TwoSampleMR
https://github.com/mrcieu/TwoSampleMR
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Exposure Outcome N.SNPs Methods OR (95% CI) P
metabolic syndrome Primary ovarian failure 79 IVW 1.01 ( 0.71–1.43 ) 0.97

MR-Egger 1.24 ( 0.59–2.57 ) 0.57
Weighted Median 1.07 ( 0.63–1.82 ) 0.81
Weighted Mode 1.32 ( 0.54–3.18 ) 0.54

Waist circumference 299 IVW 1.66 ( 0.81–3.41 ) 0.17
MR-Egger 1.37 ( 0.17–11.19 ) 0.77
Weighted Median 1.11 ( 0.37–3.37 ) 0.85
Weighted Mode 0.32 ( 0.04–2.68 ) 0.29

Body mass index (BMI) 432 IVW 1.25 ( 0.72–2.14 ) 0.43
MR-Egger 0.67 ( 0.15–3 ) 0.60
Weighted Median 1.45 ( 0.6–3.53 ) 0.41
Weighted Mode 1.13 ( 0.2–6.34 ) 0.89

insulin resistance 18 IVW 0.26 ( 0.08–0.89 ) 0.03
MR-Egger 2.83 ( 0.14–58.73 ) 0.51
Weighted Median 0.22 ( 0.04–1.26 ) 0.09
Weighted Mode 0.06 ( 0–1.39 ) 0.10

fasting blood glucose (FBG) 63 IVW 0.5 ( 0.17–1.54 ) 0.23
MR-Egger 0.48 ( 0.07–3.56 ) 0.48
Weighted Median 0.48 ( 0.1–2.46 ) 0.38
Weighted Mode 0.42 ( 0.09–2.1 ) 0.3

HDL cholesterol 86 IVW 1.33 ( 0.86–2.07 ) 0.2
MR-Egger 1.52 ( 0.74–3.12 ) 0.25
Weighted Median 1.87 ( 0.92–3.79 ) 0.08
Weighted Mode 1.55 ( 0.86–2.8 ) 0.15

Triglycerides 54 IVW 1.14 ( 0.62–2.07 ) 0.67
MR-Egger 0.93 ( 0.35–2.5 ) 0.89
Weighted Median 0.74 ( 0.3–1.79 ) 0.5
Weighted Mode 0.83 ( 0.38–1.8 ) 0.64

metabolic syndrome Ovarian dysfunction 81 IVW 1.11 ( 0.92–1.34 ) 0.29
MR-Egger 0.82 ( 0.56–1.21 ) 0.33
Weighted Median 1.06 ( 0.81–1.4 ) 0.68
Weighted Mode 1.03 ( 0.71–1.49 ) 0.88

Waist circumference 299 IVW 2.14 ( 1.45–3.15 ) < 0.001
MR-Egger 4.54 ( 1.48–13.9 ) 0.01
Weighted Median 1.91 ( 1.06–3.46 ) 0.03
Weighted Mode 0.76 ( 0.16–3.67 ) 0.74

Body mass index (BMI) 432 IVW 2.1 ( 1.56–2.83 ) < 0.001
MR-Egger 3.06 ( 1.34–6.99 ) 0.01
Weighted Median 2.35 ( 1.48–3.71 ) < 0.001
Weighted Mode 5.34 ( 1.63–17.51 ) 0.01

insulin resistance 18 IVW 1.16 ( 0.61–2.23 ) 0.65
MR-Egger 3.36 ( 0.67–16.71 ) 0.16
Weighted Median 1.3 ( 0.54–3.1 ) 0.56
Weighted Mode 1.16 ( 0.3–4.44 ) 0.83

fasting blood glucose (FBG) 63 IVW 1.74 ( 0.97–3.13 ) 0.06
MR-Egger 1.87 ( 0.65–5.35 ) 0.25
Weighted Median 1.19 ( 0.45–3.12 ) 0.72
Weighted Mode 0.83 ( 0.28–2.46 ) 0.74

HDL cholesterol 86 IVW 1.2 ( 0.96–1.52 ) 0.12
MR-Egger 1.5 ( 1.03–2.19 ) 0.04
Weighted Median 1.53 ( 1.03–2.27 ) 0.04
Weighted Mode 1.46 ( 1.03–2.07 ) 0.04

Triglycerides 54 IVW 1.01 ( 0.75–1.37 ) 0.94

Table 1  The causal relationship between metabolic syndrome and ovarian dysfunction using mendelian randomization
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Causal effects of primary ovarian failure and ovarian 
dysfunction on metabolic syndrome
For primary ovarian failure as the exposure factor, 13 
IVs were identified. The outcomes analyzed included 
metabolic syndrome, waist circumference, BMI, insulin 
resistance, FBG, HDL-C, and triglycerides. In the analy-
ses for metabolic syndrome, BMI, insulin resistance, and 
HDL-C, mismatches of 1, 1, 1, and 9 SNPs respectively 
were noted. For HDL-C and triglycerides, rs7691064 sub-
stituted for rs72664690 due to mismatched SNPs. The 
F-statistics for these IVs were all above 10.

For ovarian dysfunction as the exposure, 9 IVs were 
used. The outcome factors analyzed were metabolic syn-
drome, waist circumference, BMI, insulin resistance, 
FBG, HDL-C, and triglycerides, with mismatched SNPs 
totaling 1, 5, and 5 respectively in the analyses of insu-
lin resistance, HDL-C, and triglycerides. The substitute 

SNP, rs7691064 for rs72664690, was utilized for HDL-C 
and triglycerides. All associated F-statistics exceeded 10. 
The details of the IVs were presented in Supplementary 
Tables 12–13.

As shown in Table  2, IVW analysis indicated a causal 
relationship between ovarian dysfunction and meta-
bolic syndrome (OR = 0.98, 95% CI: 0.97–0.99, P < 0.001) 
and waist circumference (OR = 0.99, 95% CI: 0.98–0.99, 
P = 0.02). The weighted median method also supported 
the genetic correlation between ovarian dysfunction and 
both waist circumference and BMI (Fig. 2). However, no 
significant genetic correlations were found between other 
exposures and outcomes (Table 2).

With ovarian dysfunction as the exposure, Cochran’s Q 
test indicated heterogeneity in BMI and FBG (P < 0.001 
and P = 0.035, respectively) (Supplementary Table 14, 
Supplementary Fig.  3A-B). However, this heterogeneity 

Fig. 1  Causal effects of MetS on primary ovarian failure and ovarian dysfunction. Scatter plots of BMI (A) and waist circumference (B) on ovarian dysfunc-
tion; and insulin resistance (C) on primary ovarian failure. Forest plots of BMI (D) and waist circumference (E) on ovarian dysfunction; and insulin resistance 
(F) on primary ovarian failure

 

Exposure Outcome N.SNPs Methods OR (95% CI) P
MR-Egger 0.74 ( 0.45–1.21 ) 0.24
Weighted Median 0.89 ( 0.57–1.4 ) 0.62
Weighted Mode 0.86 ( 0.57–1.29 ) 0.47

Table 1  (continued) 
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Exposure Outcome N.SNPs Methods OR (95% CI) P
Primary ovarian failure metabolic syndrome 12 IVW 1 ( 0.99–1.01 ) 0.46

MR-Egger 0.99 ( 0.97–1.01 ) 0.46
Weighted Median 1 ( 0.99–1.01 ) 0.8
Weighted Mode 1 ( 0.98–1.01 ) 0.87

Waist circumference 13 IVW 1.0002 ( 0.9978–1.0026 ) 0.874
MR-Egger 0.9994 ( 0.9949–1.004 ) 0.814
Weighted Median 0.999 ( 0.9964–1.0016 ) 0.467
Weighted Mode 0.9991 ( 0.996–1.0022 ) 0.577

Body mass index (BMI) 12 IVW 1.0005 ( 0.9975–1.0034 ) 0.763
MR-Egger 0.9987 ( 0.9924–1.005 ) 0.685
Weighted Median 0.9998 ( 0.9966–1.0031 ) 0.918
Weighted Mode 1.0002 ( 0.9957–1.0046 ) 0.938

insulin resistance 12 IVW 1.002 ( 0.9932–1.0108 ) 0.663
MR-Egger 1.0041 ( 0.984–1.0247 ) 0.698
Weighted Median 1.0002 ( 0.9892–1.0113 ) 0.974
Weighted Mode 1.0024 ( 0.9878–1.0172 ) 0.752

fasting blood glucose (FBG) 13 IVW 0.9976 ( 0.995–1.0002 ) 0.073
MR-Egger 0.9949 ( 0.989–1.0009 ) 0.126
Weighted Median 0.9968 ( 0.9933–1.0003 ) 0.073
Weighted Mode 0.9964 ( 0.9906–1.0023 ) 0.252

HDL cholesterol 4 IVW 1.0023 ( 0.9906–1.0141 ) 0.703
MR-Egger 1.039 ( 0.892–1.2103 ) 0.672
Weighted Median 0.9996 ( 0.9859–1.0135 ) 0.960
Weighted Mode 0.9957 ( 0.9761–1.0156 ) 0.697

Triglycerides 4 IVW 0.9921 ( 0.9787–1.0057 ) 0.256
MR-Egger 1.0928 ( 0.9479–1.2599 ) 0.346
Weighted Median 0.996 ( 0.9827–1.0095 ) 0.563
Weighted Mode 1.0022 ( 0.9784–1.0265 ) 0.872

Ovarian dysfunction metabolic syndrome 9 IVW 0.98 ( 0.97–0.99 ) < 0.001
MR-Egger 0.98 ( 0.96–1 ) 0.05
Weighted Median 0.98 ( 0.96–1 ) 0.01
Weighted Mode 0.98 ( 0.96–1 ) 0.04

Waist circumference 9 IVW 0.9931 ( 0.9872–0.9991 ) 0.02
MR-Egger 0.9979 ( 0.9909–1.0049 ) 0.57
Weighted Median 0.9944 ( 0.9897–0.9991 ) 0.02
Weighted Mode 0.9944 ( 0.9898–0.999 ) 0.04

Body mass index (BMI) 9 IVW 0.9938 ( 0.9867–1.0009 ) 0.09
MR-Egger 0.9984 ( 0.9893–1.0076 ) 0.74
Weighted Median 0.9941 ( 0.9891–0.9992 ) 0.02
Weighted Mode 0.9942 ( 0.9894–0.999 ) 0.05

insulin resistance 8 IVW 1.0047 ( 0.9905–1.0191 ) 0.52
MR-Egger 0.9924 ( 0.9728–1.0125 ) 0.49
Weighted Median 0.9937 ( 0.9751–1.0126 ) 0.51
Weighted Mode 0.9959 ( 0.9787–1.0134 ) 0.66

fasting blood glucose (FBG) 9 IVW 1.0019 ( 0.9962–1.0076 ) 0.52
MR-Egger 1.0002 ( 0.9921–1.0084 ) 0.95
Weighted Median 1.0021 ( 0.997–1.0072 ) 0.43
Weighted Mode 1.0023 ( 0.9974–1.0073 ) 0.38

HDL cholesterol 4 IVW 0.9994 ( 0.9767–1.0225 ) 0.96
MR-Egger 0.9593 ( 0.8922–1.0314 ) 0.38
Weighted Median 1.0044 ( 0.9771–1.0324 ) 0.76
Weighted Mode 1.0064 ( 0.9743–1.0396 ) 0.73

Triglycerides 4 IVW 0.9867 ( 0.9651–1.0087 ) 0.23

Table 2  The causal relationship between ovarian dysfunction and metabolic syndrome using mendelian randomization
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is acceptable given that the analysis was conducted using 
a random effects IVW method. MR-Egger regression 
confirmed no pleiotropy affecting the analysis (Supple-
mentary Table 14); MR-PRESSO global test detected 
pleiotropy related to waist circumference and BMI 

(P = 0.043 and P = 0.006, respectively), suggesting poten-
tial outliers causing pleiotropy (Supplementary Table 
15). As shown in Supplementary Fig.  3C-D, the leave-
one-out test indicated that the MR result was not driven 
by any single SNP. After outlier removal, a statistically 

Fig. 2  Causal effects of primary ovarian failure and ovarian dysfunction on MetS. Scatter plots of ovarian dysfunction on MetS (A) and waist circumfer-
ence (B). Forest plots of ovarian dysfunction on MetS (C) and waist circumference (D)

 

Exposure Outcome N.SNPs Methods OR (95% CI) P
MR-Egger 1.0177 ( 0.9495–1.0908 ) 0.67
Weighted Median 0.9884 ( 0.9622–1.0153 ) 0.39
Weighted Mode 0.9878 ( 0.9562–1.0205 ) 0.51

Table 2  (continued) 
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significant causal relationship was revealed between 
waist circumference and ovarian dysfunction (OR = 0.99, 
95% CI: 0.99–0.99, P = 0.019), which is consistent with the 
result of IVW analysis. Besides, other results remained 
unchanged after removal of outliers.

When primary ovarian failure as the exposure, 
Cochran’s Q test indicated heterogeneity in metabolic 
syndrome (P = 0.015) (Supplementary Table 14). MR-
Egger regression showed no impact of horizontal plei-
otropy (Supplementary Table 14); MR-PRESSO tests 
identified outliers for SNPs related to metabolic syn-
drome and BMI (P = 0.022 and P = 0.048, respectively), 
while the MR-PRESSO outlier test showing no change 
after outlier removal (Supplementary Table 15). These 
sensitivity analyses ensure the reliability and stability of 
our results.

Discussion
Main findings
This study employed a bidirectional MR approach to 
investigate the relationship between metabolic syn-
drome-associated factors and ovarian dysfunction. The 
forward IVW analysis identified significant causal links 
between insulin resistance, waist circumference, and 
BMI, and the risk of ovarian dysfunction. Conversely, the 
reverse IVW analysis revealed causal connections from 
ovarian dysfunction to metabolic syndrome and waist 
circumference. Further, additional MR methods sup-
ported genetic correlations between HDL-C and ovar-
ian dysfunction, as well as between ovarian dysfunction 
and BMI. This study is the first to reveal the bidirectional 
causal relationships between metabolic syndrome and 
ovarian dysfunction using a bidirectional MR approach, 
underscoring the pivotal role of metabolic syndrome in 
the development of ovarian dysfunction. These find-
ings offer crucial insights and a scientific foundation 
for further exploration into the pathogenesis of ovarian 
dysfunction.

Interpretation
Observational clinical studies have previously high-
lighted associations between metabolic syndrome and 
ovarian dysfunction. For example, a study conducted in 
China involving 118 patients with ovarian dysfunction 
and 151 age and BMI-matched healthy female controls, 
demonstrated significantly higher rates of hypertriglyc-
eridemia (17.8% vs. 9.3%, P = 0.039) and elevated FBG 
(16.9% vs. 6.6%, P = 0.008) in patients compared to con-
trols. Additionally, the patients exhibited higher fasting 
insulin levels and insulin resistance indices (HOMA-IR), 
while other metabolic syndrome factors did not show sig-
nificant differences [6]. Moreover, a meta-analysis that 
included 1573 women with primary ovarian insufficiency 
(POI) and 1762 controls, found that women with POI 

had significantly higher waist circumference, total cho-
lesterol, low-density lipoprotein, high-density lipopro-
tein, triglycerides, and fasting glucose levels than controls 
[28]. These observational findings lend partial support 
to our MR-based conclusions, suggesting that metabolic 
syndrome may play a crucial role in the onset and pro-
gression of ovarian dysfunction.

However, not all studies align with our findings. A 
research on 56 patients with ovarian insufficiency indi-
cated that serum total cholesterol, high-density lipopro-
tein, and low-density lipoprotein levels were significantly 
higher than healthy controls, while triglycerides, glucose, 
insulin, and HOMA-IR showed no significant differences 
[29]. Another study highlighted that although the waist 
circumference of patients with ovarian dysfunction was 
significantly greater than that of healthy controls (90.0 
vs. 80.7, p < 0.01), no significant differences were found 
in lipid and glucose levels or the prevalence of diabetes 
[30]. These inconsistencies may stem from the inherent 
limitations of observational studies, such as susceptibility 
to confounding factors including age, lifestyle, and geo-
graphical variations. To ascertain the causal relationships 
between metabolic syndrome-related factors and ovar-
ian dysfunction more accurately, future research should 
employ randomized controlled trials and larger-scale 
cohort studies, aiming to minimize confounding influ-
ences and bolster the reliability and applicability of the 
findings.

Strengths and limitations
Our study elucidates a bidirectional causal relationship 
between metabolic syndrome-associated factors and 
ovarian dysfunction. Current mechanistic studies suggest 
that elements of metabolic syndrome, such as obesity 
and insulin resistance, may influence ovarian function 
through various pathways, including hormone secretion, 
lipid metabolism, and inflammatory responses [31, 32]. 
Conversely, ovarian dysfunction could lead to hormonal 
imbalances that affect metabolism and immune func-
tions, thereby increasing the risk of insulin resistance and 
dyslipidemia associated with metabolic syndrome [33, 
34]. These findings propose a dynamic interplay between 
ovarian dysfunction and metabolic syndrome. Our 
research offers valuable perspectives for further investi-
gation into these complex interaction mechanisms.

In this study, we employed a bidirectional MR 
approach, establishing causal relationships between insu-
lin resistance, waist circumference, and BMI with ovarian 
dysfunction, and confirming the bidirectional influence 
between metabolic syndrome and ovarian dysfunction. 
However, the study has several limitations: firstly, the 
sample selection is predominantly of European descent, 
which may limit the applicability of the findings to other 
populations. Secondly, the study relies on online public 
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databases, and future research should include valida-
tion across more diverse databases. Lastly, while the MR 
method enabled us to explore causal relationships, the 
specific molecular mechanisms underlying the interac-
tion between ovarian dysfunction and metabolic syn-
drome require further investigation. In conclusion, our 
study elucidates the causal connections between meta-
bolic syndrome-related factors and ovarian dysfunction, 
providing a foundation for a deeper understanding of 
their pathogenesis and the development of new thera-
peutic interventions. Nevertheless, additional clinical 
studies are necessary to confirm these results and to 
uncover more detailed mechanisms.
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