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Abstract
Background Ovarian aging is the main cause of reduced reproductive life span, yet its metabolic profiles remain 
poorly understood. This study aimed to reveal the metabolic homogeneity and heterogeneity between physiological 
and pathological ovarian aging.

Methods Seventy serum samples from physiological ovarian aging participants, pathological ovarian aging 
participants (including diminished ovarian reserve (DOR), subclinical premature ovarian insufficiency (scPOI) and 
premature ovarian insufficiency (POI)), as well as healthy participants were collected and analyzed by untargeted 
metabolomics.

Results Five homogeneous differential metabolites (neopterin, menaquinone, sphingomyelin (SM) (d14:1/24:2), SM 
(d14:0/21:1) and SM (d17:0/25:1)) were found in both physiological and pathological ovarian aging. While five distinct 
metabolites, including phosphoglyceride (PC) (17:0/18:2), PC (18:2e/17:2), SM (d22:1/14:1), SM (d14:1/20:1) and 
4-hydroxyretinoic acid were specific to pathological ovarian aging. Functional annotation of differential metabolites 
suggested that folate biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis pathways, were mainly 
involved in the ovarian aging process. Meanwhile, dopaminergic synapses pathway was strongly associated with 
scPOI, vitamin digestion and absorption and retinol metabolism were associated with POI. Furthermore, testosterone 
sulfate, SM (d14:0/28:1), PC (18:0e/4:0) and 4-hydroxyretinoic acid, were identified as potential biomarkers for 
diagnosing physiological ovarian aging, DOR, scPOI, and POI, respectively. Additionally, SM (d14:1/24:2) strongly 
correlated with both physiological and pathological ovarian aging. 4-hydroxyretinoic acid was strongly correlated 
with pathological ovarian aging.

Conclusions Metabolic homogeneity of physiological and pathological ovarian aging was related to disorders of 
lipid, folate, ubiquinone metabolism, while metabolic heterogeneity between them was related to disorders of lipid, 
vitamin and retinol metabolism.

Clinical trial number Not applicable.

Untargeted metabolomics reveals 
homogeneity and heterogeneity between 
physiological and pathological ovarian aging
Lihua Zeng1,2,3,4†, Yunyi Liang1,2,3†, Lizhi Huang1,2,3, Zu’ang Li1,2,3, Manish Kumar4, Xiasheng Zheng3, Jing Li1,2,3, 
Songping Luo1,2,3 and Ling Zhu1,2,3*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0002-6250-6993
http://crossmark.crossref.org/dialog/?doi=10.1186/s13048-025-01625-2&domain=pdf&date_stamp=2025-3-14


Page 2 of 17Zeng et al. Journal of Ovarian Research           (2025) 18:56 

Introduction
Reproductive decline is the earliest onset symptom 
of aging in females [1, 2]. The ovaries, which produce 
oocytes and steroid hormones, are essential reproduc-
tive organs for female reproductive development, fertility 
maintenance, and endocrine homeostasis [3, 4].

Ovarian aging leads to infertility and menopause due 
to reduced oocyte quality and quantity, and decreased 
ovarian function. Physiological ovarian aging gradually 
occurs with advancing development with age, with 35 
years being commonly regarded as the onset of this pro-
cess [5, 6]. In contrast, pathological ovarian aging can 
arise from various causes, including hereditary, immune, 
medical, endocrine, inflammatory, lifestyle, and socio-
psychological factors [7–9].

Pathological ovarian aging is a progressive condition 
that is subdivided into several stages: diminished ovarian 
reserve (DOR), poor ovarian response (POR), subclinical 
premature ovarian insufficiency (scPOI) and premature 
ovarian insufficiency (POI). The incidence of pathologi-
cal ovarian aging is rising and it often occurs earlier in 
life. Among infertile women, 29.3 – 30% are diagnosed 
with DOR [10, 11], with up to one -third of these patients 
also experienced POR [12]. Notably, DOR can progress 
to POI within months to several years. The prevalence of 
POI is 1.8 – 3.7%, and 0.4% of cases occurring in women 
younger than 35 years old [13, 14].

Although physiological and pathological ovarian aging 
share similar clinical symptoms, including hormonal 
changes and eventual ovarian failure, the extent to which 
these two types of ovarian aging are similar, as well as the 
underlying mechanisms driving their differences and pro-
gression, remain largely unknown. A better understand-
ing of these similarities and differences could enhance 
early detection of ovarian aging, even in its early or sub-
clinical stages, and provide critical insights for develop-
ing effective disease prevention and treatment strategies.

Metabolomics, a promising approach in systems biol-
ogy, enables the comprehensive characterization of cir-
culating metabolites. As metabolic changes can reflect 
biological physiology and pathology, metabolomics hold 
great potential for discovering clinical biomarkers, moni-
toring disease progression and evaluating therapeutic 
outcomes [15, 16]. Women with ovarian aging are prone 
to metabolic disorders, particularly those involving lipid, 
glucose, and bone metabolism [17]. Previous studies on 
physiological ovarian aging have demonstrated changes 
in lipid, amino acid, and indoleacetic acid metabolism in 
perimenopausal women, highlighting potential cardio-
vascular and metabolic risks [18, 19].

In the context of pathological ovarian aging, metabo-
lomic studies have uncovered specific alterations. Liang 
et al. [20] linked oxylipin metabolites and arachidonic 
acid (AA) metabolic pathway with oocyte development. 
Oxylipins could be produced by the autooxidation of AA, 
and AA is essential for oocyte maturation, development 
and fertility [21]. Moreover, a recent plasma metabolo-
mics study identified lipids such as arachidonoyl amide, 
18-hydroxyeicosatetraenoic acid (HETE), and phospho-
glyceride (PG) (16:0/18:1) as biomarkers with potential 
for diagnosing POI [22]. Another study found that POR 
women with decreased AMH levels showed downregu-
lated serum prostaglandin H2, cortexolone, and tetraco-
sanoic acid [23]. Despite these findings, the distinction 
between physiological and pathological ovarian aging 
remains unclear.

While metabolomics provides dynamic insights into 
both physiological and pathological changes, few stud-
ies have examined the progression of ovarian aging 
over time. A long-term study [24] revealed that women 
experiencing rapid declines in anti-Müllerian hormone 
(AMH) levels exhibited higher serum concentrations of 
metabolites such as phosphate, N-acetyl-D-glucosamine, 
branched chained amino acids (BCAAs), proline, urea, 
and pyroglutamic acid.

In this study, we employed untargeted metabolomics to 
investigate differential serum metabolites associated with 
both physiological and pathological ovarian aging. We 
further explored homogeneity and heterogeneity in met-
abolic characteristics between the two forms of aging. 
Our findings contribute to a deeper understanding of the 
mechanisms underlying ovarian aging and provide valu-
able insights for clinicians to improve the diagnosis and 
prevention of this condition.

Materials and methods
Participants and sample collection
Serum samples were collected from 70 participants 
at the First Affiliated Hospital, Guangzhou University 
of Chinese Medicine (Guangzhou, China), between 
March 2022 and October 2022. The participants were 
grouped as follows: 13 women with physiological ovar-
ian aging (old), 12 with DOR, 14 with scPOI, 19 with 
POI, and 12 healthy women (control, Ctrl). This study 
was approved by the Ethics Committee of First Affiliated 
Hospital of Guangzhou University of Chinese Medicine 
(No. JY2022-002), and is in accordance with the Decla-
ration of Helsinki. Informed consent was obtained from 
all the participants prior to sample collection. The inclu-
sion criterion for the old group was (1) age ≥ 45 years; 
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(2) without the history of diminished ovarian function. 
DOR, scPOI, and POI are different stages of pathological 
ovarian aging. Considering the complex diagnostic crite-
ria of DOR and the overlap of DOR and scPOI [25, 26], 
inclusion criteria of pathological ovarian aging were set 
as below: (1) age 20–40 years old; (2) AMH < 1.1 ng/mL 
and basic follicle-stimulating hormone (bFSH) < 15 mIU/
mL (DOR), 15 ≤ bFSH < 25 mIU/mL (scPOI), bFSH ≥ 25 
mIU/mL (POI). Participants who met the following cri-
teria were excluded from the study: (1) diagnosis of other 
endocrine diseases, such as polycystic ovarian syndrome, 
hyperprolactinemia, or thyroid dysfunction; (2) diag-
nosis of ovarian endometriosis; (3) hormone or ovarian 
stimulation treatment in the past 3 months; and (4) his-
tory of oophorectomy. The participants’ characteristics 
are shown in Table  1. Serum was collected on the 2nd 
or 3rd day of menstruation. In cases of amenorrhea or 
menopause, serum was collected randomly. Then serum 
samples were stored at -80 ℃.

Pre-treatment of serum samples
Serum samples were thawed at 4 ℃. Then, 100 µL of 
serum was resuspended with 400 µL of 80% methanol 
using well vortex. After sonicating for 5  min in an ice-
water bath, the serum samples were centrifuged at 15,000 
×g, 4℃ for 20  min. The supernatant was diluted with 
water to a final concentration containing 53% methanol. 
After centrifuging at 15,000 ×g, 4 ℃ for 20 min, 140 µL 
of the supernatant was collected for further analysis. 
Additionally, 2 µL of each sample was mixed for quality 

control (QC). Additionally, same reagent but without 
serum was defined as blank sample and tested.

Ultra-high performance liquid chromatography-tandem 
mass spectrometry (UPLC-MS/MS) analysis
UHPLC-MS/MS analysis was performed using a Van-
quish UPLC system (Thermo Fisher Scientific) coupled 
with an Orbitrap Q ExactiveTM HF mass spectrometer 
(Thermo Fisher Scientific). Chromatographic separa-
tion was performed on a ThermoFisher Hypersil Gold 
C18 column (100 × 2.1  mm, 1.9  μm) at 40 ℃. Precisely 
0.1% (v/v) formic acid (A) and methanol (B) were used as 
mobile phases for positive-ion-mode, and 5 mM ammo-
nium acetate (pH = 9.0, A) and methanol (B) were used 
as mobile phases for negative-ion mode. The flow rate 
was 0.2 mL/min. After equilibration, 5 µL of each sam-
ple was injected, and the flowing gradient elution was 
as below: 2% B from 0 to 1.5 min, 2–85% B from 1.5 to 
3 min, 85–100% B from 3 to 10 min, 100–2% B from 10 
to 10.1 min, 2% B from 10.1 to 11 min, and 2% B from 11 
to 12 min.

Mass spectrometry analysis was performed in both 
positive- and negative-ion modes. The source ionization 
parameters were set as below: spray voltage = 3500  V; 
sheath gas flow rate = 35 psi; aux gas flow rate = 10 mL/
min; capillary temperature = 320 ℃; aux gas heater tem-
perature = 350 ℃. Data were acquired over the m/z range 
of 100–1500.

To removing the background noise, the blank sample 
was injected before injecting serum samples. To con-
firm the stability and repeatability of the system, samples 

Table 1 Characteristics of participants
Item ctrl (n = 12) old (n = 13) DOR (n = 12) scPOI (n = 14) POI (n = 19)
Age (years) 30.17 ± 5.65 51.85 ± 3.39*** 33.42 ± 3.15 32.21 ± 6.78 32.89 ± 7.45
BMI (kg/m2) 21.63 ± 0.86 22.70 ± 1.71 21.17 ± 1.18 22.13 ± 0.96 21.29 ± 1.24
Age at menarche (years) 12.92 ± 0.67 13 ± 0.58 13.08 ± 0.67 13.07 ± 0.73 12.95 ± 0.71
Gravidity 1.5 (0, 2.75) 3 (2, 4)* 2 (0.25, 3) 2 (0.75, 2.25) 2 (0, 3)
Parity 1 (0, 1) 2 (1, 2.5)** 1 (0.25, 2) 1 (0, 2) 0 (0, 2)
pregnancy loss 0 (0, 0) 0 (0, 1) 0 (0, 0.75) 0 (0, 0) 0 (0, 0)
Diabetes (n(%)) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Cardiovascular disease (n(%)) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Hormones
bFSH (mIU/mL) 5.26 ± 0.98 54.72 ± 26.00*** 10.05 ± 2.75*** 19.4 ± 2.78*** 67.27 ± 28.7***

bLH (mIU/mL) 4.92 ± 1.18 38.65 ± 18.09*** 5.66 ± 2.36* 8.26 ± 3.46 34.76 ± 20.58***

bFSH/bLH 1.13 ± 0.36 1.49 ± 0.53 2.06 ± 1.01* 2.84 ± 1.51*** 2.17 ± 0.74***

bE2 (pmol/L) 185.67 ± 53.69 74.97 ± 53.59** 188.66 ± 162.76 165.36 ± 82.27 74.73 ± 40.76***

bT (nmol/L) 0.74 ± 0.39 0.37 ± 0.23 0.63 ± 0.37 0.35 ± 0.27* 0.48 ± 0.29
AMH (ng/mL) 3.90 ± 1.88 0.01 ± 0.01*** 0.43 ± 0.38*** 0.33 ± 0.51*** 0.03 ± 0.04***

Lifestyles
Smoking (n(%)) 1 (8.33%) 2 (15.38%) 1 (8.33%) 0 1 (5.26%)
Coffee (n(%)) 1 (8.33%) 1 (7.69%) 1 (8.33%) 0 0
Tea (n(%)) 0 1 (7.69%) 0 0 1 (5.26%)
Comparing to the Ctrl group, *P < 0.05, **P < 0.01, ***P < 0.001. Ctrl: control; BMI: body mass index; bFSH: basic follicle-stimulating hormone; bLH: basic luteinizing 
hormone; bE2: basic estradiol; bT: basic testosterone; AMH: anti-Müllerian hormone
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were injected randomly, and QC samples were repeatedly 
injected after injecting eight samples.

Data collection and processing
Raw data were processed using Compound Discoverer 
(Version 3.1, Thermo Fisher Scientific) to perform peak 
alignment, peak picking, metabolite identification, and 
quantification. Parameters for peak alignment and pick-
ing were set as below: retention time tolerance ± 0.2 min; 
actual mass tolerance ± 5 ppm; signal intensity toler-
ance ± 30%; signal to noise ratio ≥ 3 (when signal to noise 
ratio ≤ 3, peaks would be defined as background). The 
molecular weight was determined based on m/z, the 
molecular formula was predicted based on ppm and 
additive ions, then automatically matched with mzClould 
(https://www.mzcloud.org/), mzVault (Version 2.3, local 
database) and Masslist (local database) for MS1 analysis 
[25, 26]. Further, MS2 analysis were made by automati-
cally matching the molecular ions, fragment ions and 
collision energy in mzClould and mzVault databases. 
Then identified metabolites were annotated by The Kyoto 
Encyclopedia of Genes and Genomes (KEGG,  h t t p  s : /  / w 
w w  . g  e n o  m e .  j p / k  e g  g / p a t h w a y . h t m l), The Human  M e t a b 
o l o m e Database (HMDB, https://hmdb.ca/metabolites) 
and LIPID MAPS (https://www.lipidmaps.org/).  C o m p o 
u n d classes were obtained from these databases. Normal-
ized quantification results were obtained according to the 
QC-based method: raw metabolite quantification of each 
sample / (sum of raw metabolite quantification/sum of 
metabolite quantification of QC sample).

Statistical analysis
Data were statistically analyzed using SPSS software 
(version 26.0). Continuous variables with normal dis-
tributions were described as mean ± standard deviation 
(SD) and analyzed using one-way analysis of variance 
(ANOVA). For parametric ANOVA, Dunnett was used in 
multiple comparison test; For variables without normal 
distribution or multiple comparison test with unequal 
variances, Kruskal-Wallis H test was used. Spearman’s 
rank correlation test was performed for the correlation 
analysis. P < 0.05 was considered statistically significant.

MetaX software (http://metax.genomics.cn) was used 
to perform multivariate analysis, including principal 
component analysis (PCA) and orthogonal projections to 
latent structure discriminant analysis (OPLS-DA). Vari-
able importance in the projection (VIP) of OPLS-DA was 
determined. Between groups, metabolites with variable 
importance in projection (VIP) > 1, fold change (FC) > 1.5 
or < 0.667, and P < 0.05 were recognized as differential 
metabolites. Moreover, the validation of the OPLS-DA 
model was assessed by 7-fold cross-validation (the model 
was considered validated especially when R2Y were close 
to 1) and a permutation test (the model was considered 

validated when R2 > Q2 and Q2 < 0). The correlation 
between differential metabolites was calculated using the 
R language (Version 4.0). KEGG databases was used for 
metabolic pathway enrichment analysis. P < 0.05 was con-
sidered statistically significant.

Results
Clinical characteristics of participants
Significant clinical characteristics, including age, body 
mass index (BMI), menstruation / pregnancy / metabolic 
disease histories, hormone levels and lifestyles, were col-
lected and shown in Table  1. The differences between 
groups were mainly focus on the hormones.

Compared to the control group, bFSH levels in the old, 
DOR, scPOI, and POI groups were significantly increased 
to various degrees (P < 0.001). Accordingly, the AMH 
levels in these groups significantly decreased to vari-
ous degrees (P < 0.001). The basic luteinizing hormone 
(bLH) levels significantly increased in the old, DOR, and 
POI groups. However, a bFSH/bLH ratio > 2 was only 
observed in the DOR (P < 0.05), scPOI (P < 0.001), and 
POI groups (P < 0.001), which may represent a new dif-
ference between physiological and pathological ovar-
ian aging. Additionally, decreased baseline estradiol 
(bE2) levels were observed in the old (P < 0.01) and POI 
groups (P < 0.001), and scPOI group showed a significant 
decrease in baseline testosterone (bT) levels (P < 0.05). In 
summary, these serum hormone levels indicate dimin-
ished ovarian function during physiological and patho-
logical ovarian aging.

Multivariate analysis of metabolites
After relative standard deviation denoising, 448 and 325 
metabolites were identified in the positive-ion and neg-
ative-ion modes, respectively. The unsupervised PCA 
of all groups showed a similar distribution of variations, 
especially in the scPOI and POI groups (Fig. 1B; Supple-
mentary Fig. 1A). Unlike the other ovarian aging groups, 
variations in the DOR group were more similar to those 
in the control group. Further PCA of each ovarian aging 
group and the control group was performed, which 
showed distinct separation tendencies (Fig.  1C, F, I, L; 
Supplementary Fig. 1B, E, H, K).

Supervised OPLS-DA was applied to maximize group 
separation and identify discriminating metabolites, 
which showed marked improvements in group separa-
tion (Fig. 1D, G, J, M; Supplementary Fig. 1C, F, I, L; Sup-
plementary Fig. 2B, E, H, K, N, Q; Supplementary Fig. 3B, 
E, H, K, N, Q). 7-fold cross-validation of OPLS-DA mod-
els showed R2Y (0.926–0.986) and Q2Y (0.38–0.826). Two 
hundred random permutation tests showed that R2 > Q2 
and Q2 intercepting the Y axis at -0.5~-1.0 (Fig.  1E, H, 
K, N; Supplementary Fig.  1D, G, J, M; Supplementary 
Fig.  2C, F, I, L, O, R; Supplementary Fig.  3C, F, I, L, O, 

https://www.mzcloud.org/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://hmdb.ca/metabolites
https://www.lipidmaps.org/
http://metax.genomics.cn
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Fig. 1 (See legend on next page.)
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R). These data indicated stable and not overfitting OPLS-
DA models. The OPLS-DA results demonstrated signifi-
cant metabolic differences between the participants with 
ovarian aging and healthy participants, the participants 
with physiological ovarian aging and pathological ovar-
ian aging, and the participants with different pathological 
ovarian aging.

Identification of significant differential metabolites in 
physiological and pathological ovarian aging
Given the success of the OPLS-DA model in classify-
ing the ovarian aging groups and the control group, sig-
nificant differential metabolites from positive-ion and 
negative-ion modes were integrated and are shown in 
volcano plots. Compared to the control group, metabo-
lites marked with bright red color were significantly 
upregulated in the ovarian aging groups, and metabolites 
marked with bright blue color were significantly down-
regulated in the ovarian aging groups. Overall, 20, 26, 
18 and 21 differential metabolites were identified in the 
old vs. control group (Fig.  2A), DOR vs. control group 
(Fig. 2B), scPOI vs. control group (Fig. 2C), and POI vs. 
control group (Fig. 2D), respectively.

The top10 differential metabolites (|log2FC| value-
based) were yellow-marked and showed in Supple-
mentary Table 1. We then clustered these significant 
differential metabolites into groups (Fig.  2E), mena-
quinone, neopterin and SM (d22:1/14:1) were clus-
tered. Interestingly, these metabolites were significantly 
downregulated both in physiological and pathologi-
cal ovarian aging groups. Alpha-benzylsuccinic acid 
and SM (d27:0/14:1) were clustered and significantly 
upregulated in the old group. In the pathological ovar-
ian aging groups, SM (d17:0/25:1), 9-[(2-hydroxyethoxy)
methyl]-1,9-dihydro-6  H-purin-6-one and 15-deoxy-
Δ12,14-prostaglandin A1 were clustered and signifi-
cantly upregulated in the DOR group, while taurocholic 
acid and SM (d14:0/20:2) were clustered and significantly 
downregulated. Tetranor-12(R)-HETE, (+/-)8(9)-DIHET 
and 3-methoxytyramine were clustered and significantly 
upregulated in the scPOI group but significantly down-
regulated in the POI group.

Homogeneity and heterogeneity between physiological 
and pathological ovarian aging
To further explore the homogeneity of physiological 
and pathological ovarian aging, significant differential 

metabolites identified in the old vs. control group, DOR 
vs. control group, scPOI vs. control group, and POI vs. 
control group were compared using a venn diagram 
(Fig.  3A). Five metabolites have been recognized to be 
common in physiological and pathological ovarian aging. 
Among these metabolites, neopterin (Fig.  3B, P < 0.05), 
menaquinone (Fig. 3C, P < 0.01), SM (d14:1/24:2) (Fig. 3E, 
P < 0.01) and SM (d14:0/21:1) (Fig.  3F, P < 0.05) were 
significantly downregulated both in the physiological 
and pathological ovarian aging groups. SM (d17:0/25:1) 
(Fig.  3D, P < 0.01) was significantly upregulated both in 
the physiological and pathological ovarian aging groups.

Among these common metabolites, only downregu-
lated extent of SM (d14:0/21:1) both in physiological and 
pathological ovarian aging showed no difference. Directly 
comparing with the old group, neopterin (P < 0.05) and 
menaquinone (P < 0.01) in the POI group showed a 
larger extent of downregulation, while SM (d17:0/25:1) 
in the DOR group showed a higher extent of upregu-
lation (P < 0.05). Additionally, downregulation of SM 
(d14:1/24:2) in all pathological ovarian aging groups was 
less than that in the physiological ovarian aging group 
(P < 0.05). In the pathological ovarian aging groups, 
upregulated extent of SM (d17:0/25:1) in the DOR group 
was higher than those in the scPOI (P < 0.01) and POI 
groups (P < 0.05).

Differential metabolities specifically changed in the 
physiological ovarian aging group were further studied 
(Supplementary Table 2). Testosterone sulfate (Fig.  3G, 
P < 0.001), PC (16:0/19:2) (Fig.  3J, P < 0.01) and PC 
(18:2/19:2) (Fig.  3K, P < 0.05) were significantly down-
regulated. While alpha-benzylsuccinic acid (Fig.  3H, 
P < 0.05), C-8 ceramide-1-phosphate (Fig.  3I, P < 0.05) 
and PC (16:2e/20:0) (Fig.  3L, P < 0.05) were significantly 
upregulated.

Among these metabolites, testosterone sulfate level 
in the old group was also lower that those in the DOR 
(P < 0.001) and POI group (P < 0.01). PC (16:0/19:2) 
in the old group was downregulated when compar-
ing to the control group, but the level was still higher 
when comparing to the scPOI group (P < 0.05). In those 
three physiological ovarian aging specifically upregu-
lated metabolites, alpha-benzylsuccinic acid level in the 
old group was also higher than those in the DOR group 
(P < 0.05) and the POI group (P < 0.01), C-8 ceramide-
1-phosphate level in the old group was also higher than 
those in the DOR group (P < 0.001) and the scPOI group 

(See figure on previous page.)
Fig. 1 Principal component analysis (PCA) score plots, orthogonal projections to latent structure discriminant analysis (OPLS-DA) score plots and corre-
sponding validation plots in ESI+ mode. (A) The workflow of the study. PCA score plots of all groups (B), control (n = 12) and old (n = 13) groups (C), control 
and DOR (n = 12) groups (F), control and scPOI (n = 14) groups (I), control and POI (n = 19) groups (L). OPLS-DA score plots of control and old groups (D), 
control and DOR groups (G), control and scPOI groups (J), control and POI groups (M). Permutation test of OPLS-DA model in control and old groups (E), 
control and DOR groups (H), control and scPOI groups (K), control and POI groups (N). Ctrl: control. DOR: diminished ovarian reserve. scPOI: subclinical 
premature ovarian insufficiency. POI: premature ovarian insufficiency
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Fig. 2 The identification of differential metabolites. Volcano plot shows the differential metabolites between old and control groups (A), DOR and control 
groups (B), scPOI and control groups (C), POI and control groups (D). Comparing to the control group, the up-regulated and down-regulated metabolites 
were marked in red and blue, respectively. (E) The heatmap analyzes hierarchical clustering of the top 10 differential metabolites in all groups
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Fig. 3 The identification of common aging metabolites between physiological and pathological ovarian aging, physiological ovarian aging-specific 
metabolites. (A) Venn plot shows the differential metabolites in all groups. And there are five common aging metabolites between physiological and 
pathological ovarian aging (B-F). (G-L) The physiological ovarian aging-specific metabolites. *P < 0.05, **P < 0.01, ***P < 0.001
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(P < 0.01), PC (16:2e/20:0) level in the old group was also 
higher than those in the scPOI group (P < 0.01) and the 
POI group (P < 0.001).

The correlation between differential metabolites 
reflects synergistic or repulsive effects on functional 
regulation. Pearson correlation coefficient analysis was 
performed in the physiological ovarian aging differential 
metabolites (Supplementary Fig.  4A). Results showed 
that menaquinone, one of the common differential 
metabolites, was positively correlated with neopterin 
(P < 0.001). Testosterone sulfate, one of the physiologi-
cal ovarian aging specific differential metabolites, was 
positively correlated with SM (d15:1/20:0) (P < 0.001), but 
negatively correlated with PC (16:2e/20:0) (P < 0.05).

Homogeneity and heterogeneity between different stages 
of pathological ovarian aging
Based on the venn diagram analysis (Figs.  3A and 4A), 
we further compared the homogeneity and heterogene-
ity between three pathological ovarian aging groups. The 
results showed that the PC (17:0/18:2) (Fig. 4B, P < 0.05), 
PC (18:2e/17:2) (Fig.  4C, P < 0.05) and SM (d22:1/14:1) 
(Fig.  4D, P < 0.05) were significantly downregulated 
both in the DOR and scPOI groups. And downregu-
lated extents of these three metabolites both in the DOR 
group and scPOI group showed no difference. When 
directly comparing to the old group, PC (17:0/18:2) level 
in the POI group (P < 0.01), PC (18:2e/17:2) level and SM 
(d22:1/14:1) level in the DOR group were significantly 
lower (P < 0.05).

SM (d14:1/20:1) (Fig.  4E, P < 0.05) and 4-hydroxyreti-
noic acid (Fig.  4F, P < 0.05) were significantly down-
regulated both in the DOR and POI groups, and 
4-hydroxyretinoic acid level in the POI group showed 
a higher downregulation extent (P < 0.001). Although 
downregulation extents of SM (d14:1/20:1) showed 
no difference between the DOR and POI groups, SM 
(d14:1/20:1) levels in these two groups were significantly 
lower than that in the scPOI group (P < 0.01).

As for the pathological ovarian aging specific 
metabolites, 9-[(2-hydroxyethoxy)methyl]-1,9-di-
hydro-6  H-purin-6-one was specifically upregulated in 
the DOR group (P < 0.05), 3-(3-methoxyphenyl)propionic 
acid was specifically downregulated in the scPOI group 
(P < 0.05), and vitamin A was specifically downregulated 
in the POI group (P < 0.05). When comparing to the old 
group, 3-(3-methoxyphenyl)propionic acid levels in path-
ological ovarian aging groups were significantly lower 
(P < 0.01).

Pearson correlation coefficient analysis (Supplementary 
Fig. 4B) of ten common differential metabolites of path-
ological ovarian aging showed that menaquinone, one 
of the common differential metabolites, was positively 
correlated with 4-hydroxyretinoic acid (P < 0.05). SM 

(d22:1/14:1), one of the common differential metabolites 
of the DOR and scPOI groups, was positively correlated 
with menaquinone (P < 0.001) but negatively correlated 
with SM (d17:0/25:1) (P < 0.01).

Metabolic pathways associated with physiological and 
pathological ovarian aging
KEGG pathway analysis was performed to investigate 
enriched metabolic pathways associated with physiologi-
cal and pathological ovarian aging. Significant differen-
tial metabolites in both physiological and pathological 
ovarian aging were mainly enriched in folate biosynthe-
sis, ubiquinone and other terpenoid-quinone biosynthe-
sis (Fig. 5A-D. P < 0.05). Other metabolic pathways were 
also enriched in pathological ovarian aging groups. Sig-
nificant differential metabolites in the scPOI group were 
enriched in dopaminergic synapses pathway(P < 0.05). 
Significant differential metabolites in the POI group were 
also mainly enriched in vitamin digestion and absorption 
and retinol metabolism (P < 0.05).

Predictive value of typical metabolites on physiological 
and pathological ovarian aging
ROC curve analysis was used to assess the predictive 
value of differential metabolites for ovarian aging. In 
physiological ovarian aging, testosterone sulfate showed 
high predictive value with an area under the curve (AUC) 
of 0.929 (95% CI: 0.82–1, Youden’s index: 0.84) (Fig. 6A), 
indicating that decreased serum testosterone sulfate lev-
els could predict physiological ovarian aging. In patho-
logical ovarian aging, increased levels of SM (d14:0/28:1), 
PC (18:0e/4:0) and 4-hydroxyretinoic acid showed high 
sensitivity and specificity for DOR, scPOI, and POI 
(Fig. 6B-D), respectively. The AUC of these markers were 
0.847 (95% CI: 0.563-1, Youden’s index: 0.763), 0.923 
(95% CI: 0.81-1, Youden’s index: 0.762), and 0.921 (95% 
CI: 0.822-1, Youden’s index: 0.789), respectively. These 
new markers showed nearly equal predictive values com-
pared to accepted markers bFSH and AMH (AUC = 1).

The predictive value of five common metabolites in 
pathological ovarian aging were also analyzed. Result 
showed that PC (17:0/18:2), SM (d22:1/14:1) and 
4-hydroxyretinoic acid showed highest predictive val-
ues for POI with an AUC of 0.851, 0.921 and 0.921 
(Supplementary Fig.  5A, C, E). PC (18:2e/17:2) and SM 
(d14:1/20:0) showed highest predictive values for DOR 
with an AUC of 0.799 and 0.743 (Supplementary Fig. 5B, 
D). Additionally, combining these five metabolites also 
showed high predictive values for pathological ovarian 
aging with the AUC>0.900 (Supplementary Fig. 5F).
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Fig. 4 The identification of common aging metabolites in pathological ovarian aging. (A) Venn plot shows the common metabolites in three pathologi-
cal ovarian aging groups. (B-F) There are five common aging metabolites in pathological ovarian aging. (G-I) The examples of DOR, scPOI or POI-specific 
aging metabolites. *P < 0.05, **P < 0.01, ***P < 0.001
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Correlation analysis of common differential metabolites 
and significant clinical parameters
To further investigate the credibility of significant dif-
ferential metabolites in predicting ovarian aging, Spear-
man’s correlation analyses were performed between five 
common metabolites of physiological and pathological 
ovarian aging, five common metabolites of pathological 
ovarian aging, and diagnostic standards (age, bFSH, and 
AMH, Table 2). SM (d14:1/24:2) (P < 0.01), 4-hydroxyreti-
noic acid ((P < 0.01) and SM (d14:0/21:1) (P < 0.05) nega-
tively correlated with age.

Neopterin (P < 0.05), menaquinone (P < 0.05), 
SM (d14:1/24:2) (P < 0.05), 4-Hydroxyretinoic Acid 
(P < 0.001) and SM (d14:1/20:1) (P < 0.05) were nega-
tively correlated with bFSH. Menaquinone (P < 0.05), 
SM (d14:1/24:2) (P < 0.01), SM (d14:0/21:1) (P < 0.05) and 

4-hydroxyretinoic acid (P < 0.001) were positively corre-
lated with AMH.

Combining the correlation results with diagnostic stan-
dards, SM (d14:1/24:2) showed strong correlations with 
both physiological and pathological ovarian aging. Addi-
tionally, 4-hydroxyretinoic acid levels strongly correlated 
with pathological ovarian aging.

Discussion
Decreased fertility rates, various complications, and poor 
quality of life related to ovarian aging are critical issues. 
Discovering reliable biomarkers to assess ovarian aging 
and developing safe drugs to prevent and cure ovarian 
aging have become significant challenges for promoting 
healthy aging [27]. In this study, we investigated the met-
abolic characteristics of both physiological and patho-
logical ovarian aging and found five common differential 

Fig. 5 Metabolitic pathways in physiological and pathological ovarian aging. Bubble plots show the KEGG pathways enriched with differential metabo-
lites between the old and control groups (A), the DOR and control groups (B), the scPOI and control groups (C), the POI and control groups (D)
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metabolites of ovarian aging and five specific differen-
tial metabolites of pathological ovarian aging. Metabolic 
pathways, such as folate biosynthesis, ubiquinone and 
other terpenoid-quinone biosynthesis pathways, are 
mainly involved both in physiological and pathological 
ovarian aging. While dopaminergic synapses, vitamin 

digestion and absorption and retinol metabolism, were 
specifically associated with pathological ovarian aging. 
We also found that several metabolites, including tes-
tosterone sulfate, SM (d14:0/28:1), PC (18:0e/4:0) and 
4-hydroxyretinoic acid showed a close correlation with 
ovarian aging and could be new biomarkers in diagnosing 

Fig. 6 ROC analysis of metabolites in physiological and pathological ovarian aging. ROC curves show the clinical significance of testosterone sulfate in 
the old group (A), SM (d14:0/28:1) in the DOR group (B), PC (18:0e/4:0) in the scPOI group (C) and 4-hydroxyretinoic acid in the POI group (D)
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of physiological ovarian aging, DOR, scPOI and POI, 
respectively.

The homogeneity between physiological and patho-
logical ovarian aging could reflects the essence of ovarian 
aging. In this study, the majority of common differential 
metabolites were SM and PC. They are not only fun-
damental structural elements of cell membranes but 
also key molecules in regulating energy metabolism 
and signal transduction. In the ovarian aging groups, 
SM (d17:0/25:1) was significantly increased, whereas 
SM (d14:1/24:2) and SM (d14:0/21:1) were significantly 
decreased. In particular, SM (d14:1/24:2) was signifi-
cantly and negatively correlated with ovarian aging. The 
sphingosine base is a common structure in sphingolipids. 
Sphingosine with a longer chain appears to be positively 
correlated with ovarian aging. Longer chains would cause 
lower water solubility and decreased cell membrane 
mobility [28, 29]. In contrast, sphingolipids, including 
SM, accumulate linearly with age, and although these 
accumulations are necessary for early development, they 
may promote age-related diseases by increasing reactive 
oxygen species or inhibiting Bcl-2 [30, 31]. Another lipid, 
menaquinone, was significantly decreased in the ovarian 
aging group. Menaquinones (also known as vitamin K2), 
enriched in ubiquinone and other terpenoid-quinone 
biosynthesis pathway, are a family of redox-active small 
molecules that are crucial for energy production in bac-
teria and the post-translational γ-carboxylation of some 
proteins [32]. Menaquinone deficiency not only impairs 
blood coagulation but also leads to age-related diseases 
such as Alzheimer’s disease and osteoporosis. Supple-
mentation with menaquinone can reverse structural 
and cognitive deterioration by regulating the nucleo-
tide-binding oligomerization domain-like receptor pro-
tein 3 (NLRP3)/caspase-1/Nrf-2 signaling pathway [33], 
promote bone mineralization, and indirectly increase 
bone strength [34]. However, the effect of menaquinone 
on ovarian aging remains unclear. In addition to lipids, 
lower neopterin levels were observed in the ovarian aging 

groups. Neopterin, enriched in folate biosynthesis path-
way, is a metabolite of guanosine-5’-triphosphate (GTP) 
and is recognized as a marker of macrophage activation. 
Contrary to our study, previous studies [35, 36] showed 
that neopterin level was positively associated with age. 
During aging, the number of cells, including macro-
phages, decreases. However, age-related chronic inflam-
mation occurs as immunity decreases. A previous study 
[37] found that old mice showed an increased frequency 
of C-X-C Motif Chemokine Receptor 3 (CX3CR1) 
expressing macrophage and a reduction in Ly6C+ macro-
phages, which suggested that macrophages would adopt 
a more immunosuppressive phenotype. Additionally, the 
homogeneity of physiological and pathological ovarian 
aging is reflected in folate biosynthesis. Neopterin is the 
end product of pterin metabolism, and folate is required 
to form the starting molecule for pterin metabolism. 
Folate showed a strong positive association with neop-
terin concentration in older people with depression [38]. 
Folate is essential for oocyte development, as it is taken 
up by reduced folate carrier (RFC1) and folate receptor 1 
(FOLR1), both of which are highly expressed in cumulus-
oocyte complexes (COC) and oocytes. Folate deficiency 
can impair the activation of the TGFβ1/Smad signaling 
pathway, which in turn disrupts autophagy and reduces 
ROS scavenging ability, contributing to ovarian dysfunc-
tion [39–40]. Additionally, folate acts as an important 
methyl donor; folate deficiency can disrupt DNA meth-
ylation patterns, leading to gene expression alterations, 
base substitutions, DNA breaks, and gene deletions 
within follicles [41]. Maintaining high levels of DNA 
methylation is essential for promoting oocyte devel-
opment [42]. In summary, these common differential 
metabolites suggest that the homogeneity of physiologi-
cal and pathological ovarian aging may related to oxida-
tive stress, immune disorders, and inflammation.

The onset of ovarian aging is insidious, and the diag-
nostic criteria in the early stages are not sufficiently spe-
cific. Therefore, it is difficult to diagnose it physiologically 
or pathologically in the early stages. Testosterone sulfate, 
one of the specific differential metabolites of physiologi-
cal ovarian aging, showed high diagnostic efficacy and 
accuracy, with an AUC of 0.929 and a Youden’s index of 
0.84. Testosterone sulfate is the main metabolite of tes-
tosterone, and decreased testosterone levels are asso-
ciated with poor ovarian function [43]. Additionally, 
testosterone sulfate was negatively correlated with mena-
quinone and neopterin levels. Currently, there are no 
specific biomarkers for diagnosing physiological ovar-
ian aging, apart from age itself. Our findings suggest that 
testosterone sulfate could serve as a potential diagnostic 
marker for early-stage physiological ovarian aging, offer-
ing clinicians a more precise tool for early detection and 
intervention.

Table 2 Correlation analysis between the concentration of 
metabolites with age, basic FSH (bFSH) and AMH level
Metabolites Age bFSH AMH
Neopterin 0.1 -0.30* 0.22
Menaquinone 0.05 -0.30* 0.28*

SM (d17:0/25:1) 0.15 0.21 -0.18
SM (d14:1/24:2) -0.34** -0.29* 0.35**

SM (d14:0/21:1) -0.24* -0.21 0.26*

SM (d22:1/14:1) -0.23 -0.09 0.13
PC (18:2e/16:0) 0.04 0.11 -0.21
PC (17:0/18:2) 0.02 -0.18 0.12
4-Hydroxyretinoic Acid -0.33** -0.46*** 0.58***

SM (d14:1/20:1) -0.20 -0.30* 0.23
*P < 0.05, **P < 0.01, ***P < 0.001. - were found to be negatively correlated
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The DOR, scPOI, and POI represent different stages 
of pathological ovarian aging. DOR and scPOI over-
lap in diagnostic criteria. Although the DOR patients 
selected in this study showed different bFSH levels than 
scPOI patients, these two groups shared three com-
mon differential lipid metabolites. All showed signifi-
cantly decreased PC (18:2e/17:2), PC (17:0/18:2) and 
SM (d22:1/14:1) levels. PC, classified as a glycerophos-
pholipid, is another lipid found in common differential 
metabolites. Previous studies [44, 45] showed that PC 
could promote inflammatory cytokine expression and 
polarizes macrophage activation toward the M1 phe-
notype. In recent years, more and more studies [46, 47] 
have shown that chronic inflammatory aging is closely 
related to decreased ovarian function. The DOR and 
scPOI groups showed significant differences compared 
to the POI group. SM (14:1/20:1) and 4-hydroxyretinoic 
acid levels significantly decreased in both the DOR and 
POI groups. Additionally, 4-hydroxyretinoic acid demon-
strated high diagnostic efficacy in diagnosing POI, with 
an AUC of 0.921 and a Youden’s index of 0.789. These val-
ues exceed those reported for previously studied plasma 
markers, which typically show AUCs ranging from 0.804 
to 0.901 [22]. This highlights the superior diagnostic 
potential of 4-hydroxyretinoic acid in distinguishing POI 
from other forms of ovarian aging, further enhancing 
the accuracy of clinical assessments. 4-Hydroxyretinoic 
acid is an NADPH-dependent hydroxylated metabolite 
of retinoic acid. Retinoic acid, a derivative of vitamin A, 
plays an important role in germ cell development. Reti-
noic acid is critical for initiating meiosis in germ cells 
of fetal ovaries [48]. It could also promote folliculogen-
esis directly or through regulating gonadotropin-releas-
ing hormone (GnRH) production and release [49, 50]. 
Additionally, it can regulate ovarian steroidogenesis by 
influencing the expression or activity of steroidogenic 
enzymes, such as steroidogenic acute regulatory protein 
(STAR), cytochrome P450 family 17 subfamily A member 
1 (CYP17A1), and cytochrome P450 family 11 subfamily 
A member 1 (CYP11A1) [51]. These common differential 
metabolites represented the homogeneity of pathological 
ovarian aging.

Differences were also observed between pathologi-
cal ovarian aging groups. 9-[(2-hydroxyethoxy)methyl]-
1,9-dihydro-6  H-purin-6-one and taurocholic acid were 
representative metabolites in the DOR group. Tauro-
cholic acid is classified to conjugated bile acid and could 
effectively relieve aging. Cassandra et al. found that tau-
rocholic acid could protect against both degenerative and 
neovascular age-related macular degeneration through 
inhibiting vascular endothelial growth factor (VEGF)-
induced choroidal endothelial cell migration and tube 
formation [52]. Tauroursodeoxycholic acid, derivative 
metabolites of taurocholic acid, could relieve ovarian 

aging through rebuilding the damaged endoplasmic 
reticulum in ovarian surface epithelium [53].

Upregulated cholesteryl sulfate and downregulated 
choline were representative metabolites in the scPOI 
group. Cholesteryl sulfate is one of the most important 
known sterol sulfates in human plasma. It serves as not 
only a part of many biological membrances but also a 
substrate for the synthesis of sulfonated adrenal steroids 
such as pregnenolone. In vitro study showed that cho-
lesteryl sulfate could modulate brain energy and its neu-
roprotective effects may be related to activating AKT 
signaling [54]. Another study found that cholesteryl sul-
fate levels in women’s hair would decrease with age [55], 
which is different from the pathological ovarian aging. 
Excessive levels can also inhibit ovarian steroidogenesis 
by regulating the expression of mitochondrial P450 side 
chain cleavage (P450scc) and STAR [56]. Additionally, a 
targeted metabolomics study showed that polyunsatu-
rated choline plasmalogens in the follicle fliuid were sig-
nificantly downregulated in women with DOR [57].

Vitamin A was specifically downregulated in the POI 
group. Vitamin A, also named retinol, is the precursor of 
retinoic acid. Retinol metabolism has received consider-
able attention in the context of ovarian aging. In addition 
to promoting the meiosis of germ cells, folliculogenesis, 
and steroidogenesis, retinoic acid can also stimulate the 
differentiation of oogonial stem cells and oogenesis [58]. 
The importance of retinol metabolism in egg regen-
eration inspired us to investigate treatments for ovarian 
aging. Additionally, the metabolic pathways involved in 
vitamin digestion and absorption and retinol metabo-
lism were significant. It has been reported that vitamins 
C and E have anti-oxidative stress effects and can relieve 
mitochondrial function, which could restore the follicle 
reserve in ovarian aging mice [59, 60].

Conclusion
This study identified that both physiological and patho-
logical ovarian aging share metabolic similarities involv-
ing disruptions in lipid, folate, and ubiquinone pathways. 
However, distinct differences were observed, with physi-
ological and pathological aging displaying unique altera-
tions in lipid, vitamin, and retinol metabolism. These 
findings not only contribute to better diagnostic capabili-
ties but also open avenues for therapeutic advancements, 
as early identification of ovarian aging can inform per-
sonalized treatment strategies aimed at preserving ovar-
ian function.

Limitation
Although untargeted metabolomics enables the detection 
of a broader spectrum of metabolites compared to tar-
geted metabolomics, its accuracy may be compromised 
due to the inherent complexity of the technique. Serum 
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markers, while useful for systemic metabolomic profil-
ing, may not fully capture ovarian-specific metabolic 
changes, as they can be influenced by broader systemic 
factors. Follicular fluid, in contrast, offers a potentially 
more accurate reflection of ovarian metabolism. How-
ever, obtaining follicular fluid in the early stages of ovar-
ian aging presents significant challenges, making serum 
analysis a more practical alternative for this study. Addi-
tionally, the relatively small sample size of this study may 
limit the statistical power and generalizability of the 
findings. Given the progressive and potentially systemic 
nature of ovarian aging, larger, long-term studies are 
necessary to enhance the robustness of diagnostic capa-
bilities and to better understand the broader impacts and 
complications associated with ovarian aging.
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