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Abstract
Objectives  The study aimed to investigate the causal relationships of gut microbiota (GM), ovarian cancer (OC), 
endometrial cancer (EC), and potential metabolite mediators using Mendelian randomization (MR) analysis.

Methods  Bidirectional two-sample MR analysis and reverse MR analysis of GM on OC/EC were employed to 
determine the causal effects of GM on OC/EC and the mediating role of blood metabolites in the relationship 
between GM and OC/EC, with results validated through sensitivity analysis.

Results  We identified 6 pathogenic bacterial taxa associated with OC, including Euryarchaeota, Escherichia-
Shigella, FamilyXIIIAD3011group, Prevotella9, and two unknown genera. Christensenellaceae R.7group, Tyzzerella3, 
and Victivallaceae were found to be protective against OC. The increase in EC risk was positively associated with 
Erysipelotrichia, Erysipelotrichaceae, Erysipelotrichales, and FamilyXI. Dorea, RuminococcaceaeUCG014, and Turicibacter 
exhibited a negative correlation with the EC risk. A total of 26 and 19 blood metabolites related to GM were identified, 
showing significant correlations with OC and EC, respectively. Cytosine was found to be an intermediate metabolite 
greatly associated with EC and FamilyXI. In reverse MR analysis, the FamilyXIIIAD3011group exhibited a significant 
bidirectional causal relationship with OC.

Conclusion  Our study revealed causal relationships of GM and intermediate metabolites with OC/EC, providing new 
avenues for understanding OC/EC and developing effective treatment strategies.

Keywords  Mendelian randomization, Metabolites, Gut microbiota, Ovarian cancer, Endometrial cancer

Causal relationships of gut microbiota 
and blood metabolites with ovarian cancer 
and endometrial cancer: a Mendelian 
randomization study
Jinyan Chen1, Xuejun Chen1 and Jiong Ma1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13048-025-01630-5&domain=pdf&date_stamp=2025-3-11


Page 2 of 17Chen et al. Journal of Ovarian Research           (2025) 18:54 

Introduction
Ovarian cancer (OC) and endometrial cancer (EC) are 
two common gynecologic malignancies affecting women 
globally [1, 2]. The International Agency for Research on 
Cancer released global cancer statistics for 2022, show-
ing that there were 9.7 million cancer-related deaths and 
close to 20 million new cancer cases worldwide, with OC 
and EC accounting for 3.7% and 3.1% of all new cases 
and deaths [3]. OC is the most deadly malignant tumor 
in gynecologic cancers globally, and its incidence has 
been continuously increasing in recent years [4, 5]. Due 
to atypical early clinical manifestations, early diagnosis 
of OC is very difficult, with nearly 80% of patients being 
diagnosed at an advanced stage and a 5-year survival 
rate of lower than 40% [6]. In 2022, there were 420,242 
new diagnoses of EC globally [3]. Like most cancers, the 
recent incidence of EC has uplifted, especially among 
young women [7–9]. Although the surgical treatment of 
EC has been improved and most patients can achieve a 
relatively good clinical outcome after treatment, about 
14% of EC cases may recur, with a higher proportion in 
advanced-stage patients, severely affecting patients’ qual-
ity of life and clinical outcomes [10, 11].

The gut microbiota (GM) is a multifaceted and 
dynamic entity that evolves with the host and constantly 
changes throughout our lives [12]. Currently, more than 
22 million genes are identified from the GM, and certain 
microbial subgroups can be impactful on host physiol-
ogy through direct cell-to-cell interactions and indirect 
regulation of their metabolites [13, 14]. Dysbiosis of GM 
can lead to increased intestinal permeability, allowing 
bacterial metabolites such as lipopolysaccharides to enter 
circulation. These metabolites act in the bloodstream 
and have systemic effects on humans, increasing inflam-
mation, immune imbalance, DNA damage, abnormal 
estrogen levels, and ultimately resulting in carcinogen-
esis [15–17]. Previous studies using animal models have 
demonstrated that GM is implicated in tumor growth 
through multiple signaling pathways of metabolites 
[18–20]. Nandi et al. [21]. pointed out that dysbiosis of 
GM is a major factor in the occurrence, metastasis, and 
growth of breast cancer (BC). Wang et al. [22]. observed 
that the phylum Proteobacteria and the genus Parabac-
teroides may be potential biomarkers for cervical cancer. 
However, there is currently inadequate evidence from 
observational studies to establish a causal connection 
between GM and metabolite changes and the risk of can-
cer. Although randomized controlled trials (RCTs) are 
the gold standard for uncovering causal relationships, we 
cannot conclude the latent causal relationship between 
GM and related metabolites in OC/EC from RCTs due 
to the long latency period of some microbiotas from the 
exposures to tumor formation [23]. Therefore, innovating 

a new approach to measure the causal impact of GM on 
the risk of OC/EC is of urgent need.

Mendelian randomization (MR) is an analytical method 
commonly applied for causal inference, which uses 
genetic variants as instrumental variables (IVs) to mimic 
RCTs, thus enabling causal inference between risk factors 
and diseases [24]. The advantage of MR lies in its ability 
to effectively avoid the influence of common confounding 
factors and reverse causality in traditional bioinformat-
ics analysis. Compared with traditional bioinformatics 
methods, genetic variations in MR are regarded as IVs, 
which are randomly assigned during fertilization and 
therefore not affected by environmental factors and dis-
ease progression [25]. In addition, MR methods do not 
require expensive and time-consuming RCTs but can 
infer causal relationships from observational data. These 
characteristics make MR an ideal tool for studying the 
causal effects of GM on OC/EC risk.

In this research, we intended to dig out the causal rela-
tionships of GM and blood metabolites with OC/EC 
by utilizing data from Genome-wide association stud-
ies (GWAS) as well as the method of two-sample MR. 
Furthermore, we intended to investigate the mediating 
effects of blood metabolites on OC and EC through a 
two-step MR analysis, shedding new insights for OC/EC 
early diagnosis and treatment.

Methods
Research design
In the present work, we applied the two-sample MR 
method to elucidate the causal relationships of GM and 
blood metabolites with the risk of OC/EC. In this MR 
study, we utilized 211 GMs as exposure variables and 
OC/EC as outcome variables. To figure out whether this 
causal connection can be modulated by metabolites, we 
designed a mediation analysis. In reverse analysis, OC/
EC was selected as the exposure variable, while 211 GMs 
were as outcome variables. To meet the requirements 
of the MR method, independent genetic variations were 
used as IVs, which were required to comply with three 
key assumptions [26]: (1) IVs must be strongly associated 
with the exposure; (2) IVs cannot be related to confound-
ers; (3) IVs only influence the outcome through the expo-
sure variables. We extracted genetic data related to GM, 
blood metabolites, and OC/EC from separate GWAS 
datasets to eliminate the issue of sample overlap. Figure 1 
outlines the comprehensive overview of this MR study.

Data source
GM data
The large-scale GWAS data on GM that we included 
was from the Mibiogen Consortium, including 18,340 
individuals from 24 cohorts [27]. By utilizing three dif-
ferent regions of the 16SrRNA gene, we analyzed the 
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composition of GM and identified genetic variants influ-
encing the relative abundance of microbial taxa by apply-
ing microbial quantitative trait loci (mbQTL) mapping 
[27]. 211 units (9 phyla, 131 genera, 20 orders, 35 fami-
lies, and 16 classes) were defined [28].

OC and EC data
We included GWAS data of 25,509 OC patients and 
40,941 controls from the OC Association Consortium 
[29]. The GWAS data for EC came from 12,906 EC cases 
and 108,979 controls provided by O’Mara et al. [30]. 
(including 5624 new genotype data) [31].

Metabolism data
The blood metabolites and metabolite ratios included 
in this project were from 8,299 individuals in the Cana-
dian Longitudinal Study on Aging cohort (1,091 metabo-
lites and 309 metabolite ratios). We utilized European 
GWAS data from the GWAS Catalog: GCST90199621–
GCST90201020 [32, 33]. Table S1 displays the IDs corre-
sponding to the metabolite features of 1400 metabolites 
and metabolite ratios.

The information on GWAS is outlined in Table  1. All 
data were publicly available in the original studies, and 
each study within each GWAS obtained approval from 
the relevant institutional review board and informed 
consent from participants or caregivers, legal guardians, 
or other authorized representatives.

Selection of IVs
The criteria for selection of IVs were as follows: (1) We 
included whole genomic significant single nucleotide 
polymorphisms (SNPs) (P < 5e − 8). If no whole genomic 
significant SNPs were available as IVs, SNPs with 
P < 1e − 5 were utilized as candidate IVs (211 GMs and 
1400 metabolite or metabolite ratio-associated SNPs 
with P < 1e − 5 were considered as potential eligible IVs); 
(2) SNPs were subjected to clumping to exclude linkage 
disequilibrium (r2 = 0.001, region length = 10000  kb); (3) 
A larger F-statistic implied stronger instrument strength 
and was employed to assess for weak IVs, which were 
excluded by calculating the F-statistic. All included SNPs 
had F-statistics greater than 10.

MR analysis and mediation MR analysis
We utilized five regression models for the two-sample 
MR analysis (Inverse variance weighted (IVW), MR-
Egger regression, Weighted mode, Weighted median 
estimator, and Simple model). The SNPs were utilized 
as IVs. Given the limited number of meaningful loci of 
GM, a more lenient significance threshold (P < 1e-05) was 
applied to analyze exposure variables (GM) and outcome 
variables (OC and EC). The IVW method could directly 
examine causal effect values using combined data rather 
than individual-level data. The MR-Egger regression cal-
culated the correlation of each SNP with OC and EC (Y) 
as well as the correlation of each SNP with metabolites 

Table 1  Detailed information on the GWAS in our analysis
Disease Year ID Population Sample size Control Case
Gut Microbiota 2021 / European 18,340 NA NA
Ovarian cancer 2017 ieu-a-1120 European 66,450 40,941 25,509
Endometrial cancer 2018 ebi-a-GCST006464 European 121,885 108,979 12,906
Metabolites and metabolite ratios 2023 GCST90199621–GCST90201020 European 8299 NA NA

Fig. 1  Flow chart of the MR study
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and metabolite ratios (X) and fitted a linear function. 
The weighted median estimation method calculated the 
causal impact estimate of the exposure-outcome for the 
No. j SNP (βj). In the second stage, we evaluated whether 
OC and EC as exposure variables causally affected GM, 
and employed the same workflow for MR analysis, with 
the significance threshold of exposed SNPs for IVs set at 
P < 5e-08.

We further launched a two-step MR analysis for media-
tion analysis to probe into whether metabolites mediate 
the causal pathways from GM to OC and EC outcomes. 
The overall effect was decomposed into indirect effects 
(through the mediator) and direct effects (without the 
mediator). The total effect of GM on OC and EC was 
decomposed into (1) the direct effects of GM on OC and 
EC and (2) the indirect effects of GM mediated by metab-
olites. By dividing the indirect impact by the total effect, 
we were able to determine the proportion of the medi-
ated effect. Moreover, we calculated the 95% confidence 
interval (CI) by utilizing the delta method.

Sensitivity analysis
A sensitivity analysis was designed to make sure that 
the results were robust. Three methods were employed: 
leave-one-out method, horizontal pleiotropy test, and 
heterogeneity test. The heterogeneity of SNPs was 
examined by Cochran’s Q test. The random-effects 
IVW model was applied when heterogeneity (P < 0.05) 
existed; otherwise, the fixed-effects IVW model was 
utilized. MR-PRESSO and MR-Egger regression were 
employed to determine the horizontal pleiotropy of IVs. 
When the intercept term of MR-Egger was statistically 
significant, the presence of horizontal pleiotropy was 
indicated. Additionally, we carried out the global test 
of MR-PRESSO to figure out if there was pleiotropy in 

this project. The sensitivity analysis was conducted by 
employing a “Leave-one-out” test to sequentially remove 
each SNP to assess the effects of individual SNP on the 
causal outcome.

Statistical analysis
Two-sample MR analysis was performed by utilizing R 
(version 4.3.1) software and the R package Two Sample 
MR. The causal relationship between exposure and out-
come was assessed by the random-effect IVW analysis. 
MR-Egger regression, Simple mode, Weighted mode, and 
Weighted median were employed as auxiliary analytic 
methods. In MR analysis, P < 0.05 indicated a significant 
causal relationship between exposure and outcome.

Results
MR results
The results of the IVW model manifested that 9 of the 
211 GMs were significantly causally related to OC, of 
which 2 were unknown genera. 7 GMs were significantly 
causally related to EC (Table 2). Specifically, at the phy-
lum level, Euryarchaeota (OR = 0.914, 95%CI:0.852–
0.980, P = 0.012) had a protective effect on OC. At the 
genus level, a total of 5 GMs were found to be protec-
tive factors for OC, including Escherichia-Shigella (OR: 
0.875, 95%CI: 0.781–0.981, P = 0.022), FamilyXIIIAD3011 
group (OR: 0.857, 95%CI: 0.755–0.974, P = 0.018), Pre-
votella9 (OR: 0.885, 95% CI: 0.806–0.972, P = 0.011) 
and two unknown genera (OR < 1, P < 0.05). How-
ever, ChristensenellaceaeR.7group (OR: 1.256, 95%CI: 
1.040–1.518, P = 0.018) and Tyzzerella3 (OR: 1.084, 95% 
CI: 1.001–1.174, P = 0.047) were likely to elevate the 
risk of OC. In addition, at the family level, Victivalla-
ceae (OR = 1.098, 95%CI: 1.023–1.177, P = 0.009) may be 
linked with a higher risk of OC.

Table 2  Results of causal association of IVW MR regression
Exposure Outcome Method SNPs Beta SE P-Value OR (95%CI)
family.Victivallaceae.id.2255 OC IVW 12 0.093 0.036 0.009 1.098 (1.023–1.177)
genus.ChristensenellaceaeR.7group.id.11,283 OC IVW 11 0.228 0.096 0.018 1.256 (1.040–1.518)
genus.Escherichia.Shigella.id.3504 OC IVW 15 -0.133 0.058 0.022 0.875 (0.781–0.981)
genus.FamilyXIIIAD3011group.id.11,293 OC IVW 14 -0.154 0.065 0.018 0.857 (0.755–0.974)
genus.Prevotella9.id.11,183 OC IVW 17 -0.122 0.048 0.011 0.885 (0.806–0.972)
genus.Tyzzerella3.id.11,335 OC IVW 13 0.081 0.041 0.047 1.084 (1.001–1.174)
genus.unknowngenus.id.2041 OC IVW 10 -0.111 0.056 0.048 0.895 (0.802–0.999)
genus.unknowngenus.id.2071 OC IVW 17 -0.125 0.059 0.034 0.883 (0.786–0.991)
phylum.Euryarchaeota.id.55 OC IVW 13 -0.090 0.036 0.012 0.914 (0.852–0.980)
class.Erysipelotrichia.id.2147 EC IVW 13 0.202 0.089 0.024 1.224 (1.027–1.459)
family.Erysipelotrichaceae.id.2149 EC IVW 13 0.202 0.089 0.024 1.224 (1.027–1.459)
family.FamilyXI.id.1936 EC IVW 10 0.086 0.042 0.039 1.090 (1.004–1.182)
genus.Dorea.id.1997 EC IVW 13 -0.205 0.087 0.018 0.810 (0.687–0.965)
genus.RuminococcaceaeUCG014.id.11,371 EC IVW 18 -0.141 0.066 0.032 0.869 (0.763–0.988)
genus.Turicibacter.id.2162 EC IVW 14 -0.121 0.059 0.042 0.886 (0.789–0.996)
order.Erysipelotrichales.id.2148 EC IVW 13 0.202 0.089 0.024 1.224 (1.027–1.459)



Page 5 of 17Chen et al. Journal of Ovarian Research           (2025) 18:54 

In terms of EC, Erysipelotrichia (OR: 1.224, 
95%CI:1.027–1.459, P = 0.024), Erysipelotrichaceae 
(OR: 1.224, 95%CI: 1.027–1.459, P = 0.024), FamilyXI 
(OR: 1.090, 95% CI: 1.004–1.182, P = 0.039) and Erysip-
elotrichales (OR: 1.224, 95% CI: 1.027–1.459, P = 0.024) 
were linked with an elevated risk of EC at the level of 
class, family, and order. At the genus level, Dorea (OR: 
0.810, 95% CI: 0.687–0.965, P = 0.018), Ruminococcace-
aeUCG014 (OR: 0.869, 95% CI: 0.763–0.988, P = 0.032), 
Turicibacter (OR: 0.886, 95% CI: 0.789-996, P = 0.042) 
were negatively linked with EC risk (Table 2).

The other four MR methods, MR-Egger regression, 
simple model, weighted model, and weighted median 
for causal analyses as well as MR forest plot are shown in 
Table S2 and Figure S1.

Sensitivity test
To ensure the reliability and robustness of the results, 
we conducted sensitivity analyses. To eliminate poten-
tial bias in IVs, we carried out the heterogeneity test and 
horizontal pleiotropy test in the MR study. In sensitivity 
analysis, the IVW method and MR-Egger method did 
not detect heterogeneity between IVs (P > 0.05) (Table 3). 
Furthermore, for the test of pleiotropy, both MR-
PRESSO analysis and MR-Egger regression showed inter-
cept P values > 0.05, implying no evidence of pleiotropy 
among the included SNPs. Scatter plots and funnel plots 
manifested that the distribution of all included SNPs was 
approximately symmetrical, implying that causal asso-
ciations were unlikely to be influenced by potential bias 
(Figure S2-3).

According to the leave-one-out sensitivity analysis, the 
results with the remaining SNPs were similar to those 
including all SNPs after sequentially removing each GM 
SNP, with no SNP exerting a substantial influence on 
the estimated causal association values, exhibiting the 
robustness of the MR results in this work (Figure S4).

Mediation MR results
Preliminary screening of blood metabolites
To examine the function of metabolites in the expo-
sure variables and outcome, we launched a preliminary 
screening of metabolites. The IVW model results in Table 
S3 indicated significant causal relationships of 9 GMs and 
511 metabolites with OC, including 2 unknown genera. 
The IVW model results in Table S4 manifested significant 
causal relationships of 7 GMs and 198 metabolites with 
EC.

The IVW model results in Table S5 indicated 75 out 
of 1400 metabolites or metabolic ratios having signifi-
cant causal relationships with OC, while the IVW model 
results in Table S6 indicated 105 metabolites or meta-
bolic ratios having significant causal relationships with 
EC.

Preliminary IVW analysis uncovered that 26 metabo-
lites possessed causal relationships with OC and 9 related 
GMs. 19 metabolites had causal relationships with EC 
and 7 relevant GMs (Fig. 2).

Associations between GM and blood metabolites related to 
OC/EC
We further included 9 OC-related GMs as exposure vari-
ables and 26 metabolites as outcomes. The IVW model 
results in Fig. 3 indicated significant causal relationships 
(P < 0.05) between 9 OC-related GMs and 26 metabo-
lites. Neither heterogeneity nor horizontal pleiotropy was 
detected in the MR analysis (Table S7).

We included 7 EC-related GMs as exposure variables 
and 19 metabolites as outcomes. The results of the IVW 
model in Fig.  4 suggested a significant causal relation-
ship between the 7 EC-related GMs and 19 metabo-
lites (P < 0.05). Similar to OC, in the MR analysis, there 
was neither horizontal pleiotropy nor heterogeneity in 
the SNPs of EC, indicating that the causal association 
between the two was unlikely to be impacted by potential 
bias (Table S8).

Association of blood metabolites with OC/EC
In the analysis of the causal relationship between GM 
and OC, we launched IVW analysis on 26 specific metab-
olites. The IVW model results in Fig. 5 manifested a sig-
nificant causal relationship between the 26 metabolites 
and OC (P < 0.05). MR analysis results demonstrated that, 
except for GCST90199945 (P = 0.012), the other metab-
olites did not exhibit horizontal pleiotropy (P > 0.05). 
However, results from Cochran’s Q test and MR-Egger 
regression suggested that GCST90200424 metabolite had 
P values less than 0.05, implying potential bias or hetero-
geneity association between SNPs (Table S9).

The causal relationship between EC and 19 metabo-
lites was analyzed (Fig. 6). Results from the IVW model 
uncovered a significant causal relationship between the 
19 metabolites and EC (P < 0.05). In MR analysis, except 
for GCST90199835 (P < 0.001)and GCST90199855 
(P = 0.045), we observed no horizontal pleiotropy in other 
results (P > 0.05). GCST90199842 and GCST90200097 
had P < 0.05 in Cochran’s Q test and MR-Egger regres-
sion, implying the presence of heterogeneity between 
SNPs (Table S10).

The heterogeneity in our analysis might be induced by 
differences in data from different analysis platforms, dif-
ferent experiments, or different populations. However, 
since the IVW default method was a random effects 
model, the presence of heterogeneity exerted no influ-
ence on the interpretation of the results. The results of 
the “Leave-one-out” sensitive analysis can be found in 
Figure S5-6.
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Association proportion of metabolite-mediated GM and OC/
EC
Next, we carried out a mediation analysis to probe into 
potential causal chains and dissect potential metabolites 
that may mediate the relationship between GM and OC/
EC (Fig.  7). The results of Tables  4 and 5 demonstrated 
that metabolites in the GM populations at the phylum, 
genus, and species levels might play a mediating part in 
the impact of GM on OC/EC. We identified a significant 
mediating function of cytosine levels on the causal rela-
tionship between Family XI and EC (B=-0.017, 95% CI: 
-0.034–0.000, P = 0.046), with a mediation proportion of 

19.7% (Table 4). For OC, no metabolites with significant 
mediating effects were found (Table 5).

Reverse MR results
To determine whether the observed GMs were impacted 
by the risk of OC/EC, we launched reverse MR analy-
sis, treating OC and EC as exposure variables and 
GM as the outcome. The IVW results in Fig.  8 mani-
fested a reverse causal relationship between OC and 
12 GMs. The detected OC had fewer causal effects on 
GMs identified in the forward MR analysis. Only Fami-
lyXIIIAD3011group exhibited a bidirectional causal 

Fig. 3  Causal association results from IVW MR Regression of 9 GMs with 26 metabolites

 

Fig. 2  Venn diagram (A) Metabolites that could mediate the relationship between GM and OC were screened. (B) Metabolites that could mediate the 
relationship between GM and EC were screened
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Fig. 5  Causal association results from IVW MR Regression of 26 metabolites with OC

 

Fig. 4  Causal association results from IVW MR Regression of 7 GMs with 19 metabolites
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relationship with OC. OC was a risk factor for Fami-
lyXIIIAD3011group (OR = 1.101, 95%CI: 1.011–1.198, 
P = 0.027).

In terms of EC, we observed no significant causal 
effects of EC on the GMs identified in the forward MR 
analysis. However, we observed that EC was significantly 
associated with two other types of GMs (Fig. 8), namely 
Ruminiclostridium9 (OR: 1.083, 95%CI: 1.019–1.152, 
P = 0.011) and Peptococcaceae (OR: 1.102, 95%CI: 1.021–
1.189, P = 0.013), with EC being a risk factor for both.

Furthermore, we also validated results using four other 
MR methods (Table S11). In the reverse MR analysis, nei-
ther heterogeneity nor horizontal pleiotropy was present, 

indicating that causal connections were less likely to be 
impacted by potential biases (Table S12). The results of 
the “Leave-one-out” sensitive analysis can be found in 
Figure S7.

Discussion
Herein, we designed MR analysis to probe into the causal 
relationships of GM and GM-derived metabolites with 
OC/EC. The summary data from the largest and most 
recent GWAS were utilized, we detected 9 GMs and 26 
metabolites playing essential roles in OC, and 7 GMs and 
19 metabolites associated with EC development. Reverse 
MR analysis results suggested a bidirectional causal rela-
tionship between Family.XIIIAD3011group and OC. By 
two-step MR analysis, we identified important blood 
metabolites that functioned as mediators in the causal 
relationship of cytosine levels in EC and FamilyXI.

In our study, we identified potential causal relation-
ships of Euryarchaeota, Escherichia-Shigella, FamilyXII-
IAD3011group, and Prevotella9 with the reduced risk of 
OC, whereas Christensenellaceae R.7group, Tyzzerella3, 
and Victivallaceae did the opposite. Methanobrevibacter 
smithii, the main components of Euryarchaeota, is the 
main archaeal species in the human intestine [34], which 
can not only induce the growth of other microorgan-
isms and maintain the stability and diversity of the intes-
tinal microbial community but also significantly affect 
the host health through its specific metabolites (such as 
methane) or specific metabolic pathways [35, 36]. Stud-
ies have reported that variations in the abundance of 

Fig. 7  Flow chart of mediation analysis

 

Fig. 6  Causal association results from IVW MR of 19 metabolites with EC
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Exposure Mediation Outcome Mediated 
effect

Mediated 
proportion

Pvalue Direct 
effect

All 
effect

genus.unknowngenus.id.2071 1-linoleoyl-
2-linolenoyl-GPC 
(18:2/18:3) levels

OC -0.008(-0.027, 
0.010)

6.7% (21.3%, 
-7.9%)

0.369 -0.116 -0.125

genus.unknowngenus.id.2041 N-acetylputrescine 
to (N(1) + N(8))-
acetylspermidine 
ratio

OC 0.006(-0.009, 
0.021)

-5.3% (8.3%, 
-18.9%)

0.445 -0.117 -0.111

genus.unknowngenus.id.2041 N6-acetyllysine 
levels

OC 0.012(-0.010, 
0.034)

-10.5% (9.3%, 
-30.3%)

0.300 -0.123 -0.111

genus.unknowngenus.id.2041 Alpha-hydroxyiso-
caproate levels

OC -0.013(-0.031, 
0.004)

11.9% (27.9%, 
-4.0%)

0.142 -0.098 -0.111

genus.Prevotella9.id.11,183 X-24,951 levels OC -0.019(-0.041, 
0.004)

15.2% (33.6%, 
-3.3%)

0.107 -0.104 -0.122

genus.Prevotella9.id.11,183 X-23,678 levels OC 0.017(-0.007, 
0.041)

-13.8% (5.9%, 
-33.6%)

0.170 -0.139 -0.122

genus.Prevotella9.id.11,183 Linolenoylcarnitine 
(C18:3) levels

OC 0.018(-0.002, 
0.039)

-14.9% (2.0%, 
-31.9%)

0.084 -0.140 -0.122

genus.FamilyXIIIAD3011group.id.11,293 Histidine to trans-
urocanate ratio

OC 0.023(-0.015, 
0.061)

-14.9% (9.6%, 
-39.4%)

0.234 -0.177 -0.154

genus.FamilyXIIIAD3011group.id.11,293 Pseudouridine 
levels

OC 0.018(-0.012, 
0.049)

-11.8% (7.9%, 
-31.5%)

0.239 -0.172 -0.154

phylum.Euryarchaeota.id.55 Oleoyl-linoleoyl-
glycerol (18:1 to 
18:2) [2] to linoleo-
yl-arachidonoyl-
glycerol (18:2 to 
20:4) [1] ratio

OC -0.006(-0.016, 
0.004)

6.8% (17.9%, 
-4.4%)

0.234 -0.084 -0.090

genus.FamilyXIIIAD3011group.id.11,293 1-palmitoyl-2-stea-
royl-gpc (16:0/18:0) 
levels

OC -0.026(-0.080, 
0.028)

16.6% (51.5%, 
-18.4%)

0.352 -0.129 -0.154

genus.FamilyXIIIAD3011group.id.11,293 Trimethylamine 
n-oxide levels

OC -0.018(-0.045, 
0.009)

11.7% (29.1%, 
-5.8%)

0.191 -0.136 -0.154

genus.FamilyXIIIAD3011group.id.11,293 Imidazole propio-
nate levels

OC 0.015(-0.020, 
0.050)

-9.7% (12.8%, 
-32.1%)

0.399 -0.169 -0.154

genus.FamilyXIIIAD3011group.id.11,293 1-linoleoyl-gpc 
(18:2) levels

OC 0.016(-0.012, 
0.044)

-10.2% (8.0%, 
-28.4%)

0.272 -0.170 -0.154

genus.Escherichia.Shigella.id.3504 Salicylate to oxa-
late (ethanedioate) 
ratio

OC 0.014(-0.008, 
0.037)

-10.6% (6.3%, 
-27.5%)

0.218 -0.147 -0.133

genus.Escherichia.Shigella.id.3504 X-12,221 levels OC 0.021(-0.013, 
0.054)

-15.4% (10.0%, 
-40.7%)

0.235 -0.154 -0.133

genus.Escherichia.Shigella.id.3504 Pseudouridine 
levels

OC -0.015(-0.035, 
0.006)

10.9% (26.1%, 
-4.4%)

0.161 -0.119 -0.133

genus.Escherichia.Shigella.id.3504 Dimethylglycine 
levels

OC 0.013(-0.010, 
0.036)

-9.7% (7.5%, 
-26.9%)

0.269 -0.146 -0.133

genus.Escherichia.Shigella.id.3504 3-amino-2-piperi-
done levels

OC 0.013(-0.008, 
0.034)

-9.6% (6.4%, 
-25.5%)

0.239 -0.146 -0.133

genus.Escherichia.Shigella.id.3504 N-acetylserine 
levels

OC -0.010(-0.029, 
0.008)

7.8% (21.6%, 
-6.0%)

0.266 -0.123 -0.133

phylum.Euryarchaeota.id.55 1-palmitoyl-2-ar-
achidonoyl-gpc 
(16:0/20:4n6) levels

OC -0.007(-0.019, 
0.006)

7.4% (21.0%, 
-6.2%)

0.286 -0.083 -0.090

genus.ChristensenellaceaeR.7group.id.11,283 Gamma-CEHC 
glucuronide levels

OC -0.013(-0.065, 
0.039)

-5.8% (-28.7%, 
17.2%)

0.623 0.241 0.228

Table 4  Mediating role of metabolites in the causal relationship between GM and OC
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methanogenic archaea are linked to changes in pro-
inflammatory pathways in inflammatory bowel disease 
[37, 38]. A large number of former studies and epide-
miological data have emphasized the function of chronic 
inflammation in the development of OC [39, 40]. Thus, 
the modulation of the metabolic activity of archaea, and 
in particular the uplift in the population of beneficial 
archaea, may aid in reducing inflammation, thus favoring 
the treatment of OC.

Prevotella is part of the Bacteroidetes, a group of 
Gram-negative bacteria that are widely considered to be 
foundational members of the human GM, participating 
in polysaccharide fermentation, thereby contributing to 
the production of short-chain fatty acids to maintain the 
integrity of the host’s gut barrier and modulate immune 
responses [41, 42]. Currently, Prevotella 9 is a protec-
tive factor in autoimmune diseases [43, 44]. However, 
its function in the development of cancer seems to vary 
depending on the type of cancer. For example, Prevotella 
9 levels are often elevated in patients with unresectable 
liver cancer (LC) [45] but are negatively correlated with 
the occurrence and development of esophageal cancer 
[46]. The mechanisms by which Prevotella 9 influences 
specific cancers merit further exploration.

Escherichia and Shigella are Gram-negative rod-shaped 
bacteria belonging to the Enterobacteriaceae family, 
which are part of the Proteobacteria and are considered 
conditioned pathogens [47]. Escherichia and Shigella are 
considered separate genera in many categorization sys-
tems. However, because of the high sequence similarity 

between their genomes and the inaccuracies of current 
metagenomic sequencing technologies in distinguish-
ing members of the two genera, they are often classified 
together into one genus in bioinformatics analysis, espe-
cially in clinical microbiology testing [48]. A study on 
the identification of related bacterial communities in OC 
samples uncovered that the Proteobacteria was dominant 
when comparing OC sample pathologies with adjacent 
tissues of tumors [49]. The high abundance of Proteo-
bacteria in post-treatment patients with adrenocorti-
cal carcinoma was also associated with better prognosis 
[50], both of which are consistent with our findings that 
the Proteobacteria in the GM of OC patients is a protec-
tive factor. However, as a common pathogenic bacteria 
in the human gut, Proteobacteria is generally considered 
to be associated with various inflammatory and chronic 
diseases, exerting pro-inflammatory effects by protect-
ing infections [51]. Most results also indicated that tumor 
patients have more deformed bacterial members in their 
bodies compared to normal tissues and feces [52–54]. 
The appearance of this seemingly contradictory result 
may be related to the complex relationship between GM 
and host health. Therefore, further study on the poten-
tial connection mechanism between such bacteria and 
OC is necessary. Of course, this result cannot rule out the 
reason that a lack of precision in describing the names of 
specific bacteria is caused by the minimum classification 
of MR studies that is only limited to genera.

Christensenellaceae and Tyzzerella are both mem-
bers of the Firmicutes, participating in the favorable 

Exposure Mediation Outcome Mediated 
effect

Mediated 
proportion

Pvalue Direct 
effect

All 
effect

family.Victivallaceae.id.2255 Linoleoyl-arachi-
donoyl-glycerol 
(18:2/20:4) [1] 
levels

OC -0.006(-0.015, 
0.003)

-6.9% (-16.6%, 
2.8%)

0.163 0.099 0.093

phylum.Euryarchaeota.id.55 1-stearoyl-2-ar-
achidonoyl-gpc 
(18:0/20:4) levels

OC -0.006(-0.018, 
0.006)

6.2% (19.5%, 
-7.2%)

0.366 -0.084 -0.090

phylum.Euryarchaeota.id.55 Pseudouridine 
levels

OC 0.009(-0.001, 
0.020)

-10.3% (1.1%, 
-21.6%)

0.076 -0.099 -0.090

phylum.Euryarchaeota.id.55 Linoleoyl-arachi-
donoyl-glycerol 
(18:2/20:4) [1] 
levels

OC -0.008(-0.018, 
0.003)

8.6% (20.3%, 
-3.1%)

0.148 -0.082 -0.090

phylum.Euryarchaeota.id.55 N6-acetyllysine 
levels

OC 0.007(-0.005, 
0.020)

-8.1% (5.9%, 
-22.0%)

0.257 -0.097 -0.090

genus.unknowngenus.id.2071 X-16,087 levels OC 0.012(-0.014, 
0.039)

-10.0% (11.3%, 
-31.2%)

0.358 -0.137 -0.125

genus.unknowngenus.id.2071 3-amino-2-piperi-
done levels

OC 0.014(-0.009, 
0.038)

-11.3% (7.4%, 
-30.0%)

0.234 -0.139 -0.125

phylum.Euryarchaeota.id.55 Cholesterol to lino-
leoyl-arachidonoyl-
glycerol (18:2 to 
20:4) [1] ratio

OC -0.006(-0.016, 
0.003)

6.9% (17.3%, 
-3.4%)

0.188 -0.084 -0.090

Table 4  (continued) 
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Exposure Mediation Outcome Mediated 
effect

Mediated 
proportion

Pvalue Direct 
effect

All 
effect

genus.RuminococcaceaeUCG014.id.11,371 X-11,858 levels EC 0.016(-0.013, 
0.046)

-11.5% (9.4%, 
-32.5%)

0.280 -0.157 -0.141

genus.RuminococcaceaeUCG014.id.11,371 Cytosine levels EC 0.024(-0.007, 
0.056)

-17.3% (4.9%, 
-39.6%)

0.126 -0.165 -0.141

genus.RuminococcaceaeUCG014.id.11,371 Trans 3,4-methy-
leneheptanoate 
levels

EC -0.022(-0.057, 
0.012)

15.8% (40.3%, 
-8.7%)

0.207 -0.119 -0.141

genus.RuminococcaceaeUCG014.id.11,371 Carboxyethyl-
gaba levels

EC 0.016(-0.008, 
0.040)

-11.2% (5.8%, 
-28.2%)

0.197 -0.157 -0.141

genus.Dorea.id.1997 X-24,307 levels EC -0.026(-0.071, 
0.018)

12.8% (34.4%, 
-8.8%)

0.245 -0.179 -0.205

genus.Dorea.id.1997 X-11,858 levels EC -0.019(-0.063, 
0.025)

9.3% (30.8%, 
-12.3%)

0.400 -0.186 -0.205

genus.Dorea.id.1997 Furaneol sulfate 
levels

EC 0.026(-0.031, 
0.082)

-12.5% (15.0%, 
-40.0%)

0.373 -0.231 -0.205

genus.Turicibacter.id.2162 Mannose to 
mannitol to 
sorbitol ratio

EC 0.017(-0.005, 
0.039)

-14.0% (4.5%, 
-32.4%)

0.138 -0.138 -0.121

family.FamilyXI.id.1936 X-22,509 levels EC -0.016(-0.035, 
0.003)

-18.7% (-40.7%, 
3.3%)

0.096 0.102 0.086

family.FamilyXI.id.1936 Cytosine levels EC -0.017(-0.034, 
-0.000)

-19.7% (-39.1%, 
-0.4%)

0.046 0.103 0.086

family.FamilyXI.id.1936 Glyco-beta-muri-
cholate levels

EC 0.008(-0.003, 
0.020)

9.8% (-3.5%, 
23.1%)

0.148 0.077 0.086

family.FamilyXI.id.1936 Androstenediol 
(3beta,17beta) 
disulfate (1) 
levels

EC 0.013(-0.000, 
0.026)

15.0% (-0.5%, 
30.5%)

0.058 0.073 0.086

family.Erysipelotrichaceae.id.2149 Glycocheno-
deoxycholate 
glucuronide (1) 
levels

EC 0.013(-0.023, 
0.048)

6.3% (-11.3%, 
23.8%)

0.484 0.190 0.202

class.Erysipelotrichia.id.2147 Glycocheno-
deoxycholate 
glucuronide (1) 
levels

EC 0.013(-0.023, 
0.048)

6.3% (-11.3%, 
23.8%)

0.484 0.190 0.202

genus.Turicibacter.id.2162 X-21,353 levels EC 0.017(-0.005, 
0.038)

-13.8% (4.1%, 
-31.8%)

0.130 -0.137 -0.121

genus.Turicibacter.id.2162 X-18,887 levels EC -0.022(-0.049, 
0.005)

18.1% (40.5%, 
-4.2%)

0.111 -0.099 -0.121

genus.Turicibacter.id.2162 Mannose levels EC 0.013(-0.009, 
0.034)

-10.4% (7.8%, 
-28.5%)

0.262 -0.133 -0.121

genus.Turicibacter.id.2162 3-hy-
droxydecanoate 
levels

EC 0.027(-0.001, 
0.054)

-22.3% (0.5%, 
-45.1%)

0.055 -0.148 -0.121

genus.Turicibacter.id.2162 Quinate levels EC -0.015(-0.036, 
0.006)

12.6% (30.1%, 
-4.9%)

0.157 -0.105 -0.121

genus.RuminococcaceaeUCG014.id.11,371 X-24,243 levels EC 0.012(-0.009, 
0.033)

-8.5% (6.5%, 
-23.5%)

0.267 -0.153 -0.141

order.Erysipelotrichales.id.2148 Glycocheno-
deoxycholate 
glucuronide (1) 
levels

EC 0.013(-0.023, 
0.048)

6.3% (-11.3%, 
23.8%)

0.484 0.190 0.202

genus.RuminococcaceaeUCG014.id.11,371 X-11,858 levels EC 0.016(-0.013, 
0.046)

-11.5% (9.4%, 
-32.5%)

0.280 -0.157 -0.141

genus.RuminococcaceaeUCG014.id.11,371 Cytosine levels EC 0.024(-0.007, 
0.056)

-17.3% (4.9%, 
-39.6%)

0.126 -0.165 -0.141

Table 5  Mediating role of metabolites in the causal relationship between GM and EC
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regulation of the intestinal environment and immune 
regulation and health homeostasis in the host, playing a 
pivotal part in human gut health [55–57]. Christensenel-
laceae R-7 group is linked with an elevated risk of pros-
tate cancer [58]. In another study on the risk of BC, a 
negative connection between the Christensenellaceae R-7 
group and the risk of BC is detected [59]. In our work, 
ChristensenellaceaeR-7group was positively linked to 
OC risk, and its effect was different in different cancers. 
The reports exhibiting the association between Chris-
tensenellaceae and various cancer risks further confirmed 
the important role of this microbiota in the occurrence 
and development of cancer. The current literature about 
Tyzzerella3 is very limited, but increased Tyzzerella3 
abundance has been reported in gestational diabetes mel-
litus patients and patients at increased risk of spinal pain, 
as well as in mice with neuroblastoma-induced tumors 
[60, 61]. This is in line with our study, where we observed 
a positive connection between Tyzzerella3 and OC risk. 
However, the mechanism of Christensenellaceae and 
Tyzzerella in the occurrence and development of OC is 
still blank, awaiting rigorous experiments in the future.

Moreover, we also detected a genetic causality of the 
interaction between FamilyXIIIAD3011group and OC. 
FamilyXIIIAD3011group represents a type that is less 
easy to identify in the Firmicutes. Research on FamilyXII-
IAD3011group is very limited. The Victivallaceae family 
belonging to the Verrucomicrobia is a normal flora in the 
human intestine, functioning as beneficial bacteria in the 
human body in most cases [62]. However, in this study, 

it is positively correlated with the occurrence of OC, as a 
taxon that has not been well studied in clinical practice. 
The study of Victivallaceae as a harmful bacteria needs to 
be carried out in the future.

The taxa with significantly increased risk of EC at the 
class, family, and order levels were Erysipelotrichia, Ery-
sipelotrichaceae, and Erysipelotrichales, all of which 
belong to Firmicutes. The elevated Erysipelotrichaceae 
levels are linked with intestinal inflammation [63, 64] and 
have been utilized as a biomarker for experimental auto-
immune encephalitis in animal models [65]. The abun-
dance of Erysipelotrichaceae is found to be elevated in 
colorectal cancer (CRC) and oral cancer [66, 67]. A study 
also manifested that Erysipelotrichaceae-Erysipelothrix 
is highly immunogenic, exhibiting a positive correlation 
with tumor necrosis factor [68]. Therefore, there is a pos-
itive correlation between Erysipelotrichaceae and inflam-
mation, which may elevate the risk of OC patients by 
increasing the risk of inflammation. As a member of the 
phylum Firmicutes, class Erysipelotrichia, order Erysip-
elotrichales, and family Turicibacteraceae, Turicibacter 
is a Gram-positive obligately anaerobic bacteria [69]. 
Although the causal relationship between Turicibacter 
and EC has not yet been determined, some studies have 
demonstrated that Turicibacter may be a beneficial intes-
tinal bacterium with anti-inflammatory properties [70, 
71]. In cancers of the digestive system, Turicibacter is a 
protective bacterium and negatively lined with LC [72], 
and our study supported the idea that Turicibacter may 
serve as a protective bacterial species for EC. However, 

Fig. 8  Causal association results from IVW MR Regression of OC/EC with GM

 

Exposure Mediation Outcome Mediated 
effect

Mediated 
proportion

Pvalue Direct 
effect

All 
effect

genus.RuminococcaceaeUCG014.id.11,371 Trans 3,4-methy-
leneheptanoate 
levels

EC -0.022(-0.057, 
0.012)

15.8% (40.3%, 
-8.7%)

0.207 -0.119 -0.141

genus.RuminococcaceaeUCG014.id.11,371 Carboxyethyl-
gaba levels

EC 0.016(-0.008, 
0.040)

-11.2% (5.8%, 
-28.2%)

0.197 -0.157 -0.141

Table 5  (continued) 



Page 14 of 17Chen et al. Journal of Ovarian Research           (2025) 18:54 

it is interesting that different metabolites have different 
effects on the causal relationship with EC, but the exact 
reasons and underlying mechanisms causing this differ-
ence are currently unclear, thus requiring further clarifi-
cation in future prospective studies.

In a previous study predicting the response of CRC 
patients receiving GM-assisted chemoradiotherapy, 
the microbe Dorea associated with butyrate produc-
tion is overrepresented in responders at baseline sam-
ples [73]. Butyrate is a common short-chain fatty acid 
in gut fermentation products and plays a crucial role in 
host health, being capable of repairing intestinal muco-
sal damage, increasing the expression of ZO-1 pro-
tein, enhancing intestinal barrier function, reducing 
endotoxin levels in the gut, suppressing inflammatory 
responses, improving tumor microenvironment, and 
hindering tumor growth [74, 75]. This may explain why 
we identified Dorea as a protective factor for EC in our 
study. However, since no conclusive evidence was found 
in the reverse MR analysis to prove that EC influenced 
the nature of Dorea, further research is required for vali-
dation. Similarly, in this investigation, we also observed a 
positive effect of RuminococcaceaeUCG014 on EC. As a 
member of the Firmicutes phylum and Clostridium class, 
Ruminococcaceae is known for its anaerobic nature in the 
gut, playing a dominant part in fermenting complex car-
bohydrates and amino acids into short-chain fatty acids, 
which can be utilized for energy metabolism and gut 
health enhancement [76]. Existing studies suggested that 
short-chain fatty acids may have a preventive and ther-
apeutic effect on cancer, and it has been proposed that 
Clostridium may influence cancer occurrence and devel-
opment by generating short-chain fatty acids [52, 77, 78]. 
However, whether the protective effect of Ruminococca-
ceaeUCG014 on EC is directly mediated by the genera-
tion of short-chain fatty acids remains to be determined. 
Further research is instrumental in uncovering the exact 
mechanisms behind these associations.

This work uncovered that Family XI elevated the risk 
of EC occurrence. Furthermore, we found that changes 
in cytosine levels were effective intermediate metabo-
lites influencing the two. The research seems to be the 
first investigation to experimentally establish an asso-
ciation among these three. DNA methylation is an epi-
genetic alteration that alters gene expression without 
changing the DNA sequence by adding methyl covalently 
to cytosine under the CpG sequence [79]. Changes in 
cytosine methylation are associated with cancer etiology 
in two distinct ways. Firstly, aberrant methylation pat-
terns can lead to genomic instability, oncogene expres-
sion, and tumor suppressor gene silence. Second, C > T 
transition mutations occurring in CpG predominate in 
mutations in human tumors, which are often associated 
with cancer-associated mutational hotspots and are the 

most common single-base changes in human tumors 
[80]. Therefore, Family XI may affect EC risk by regulat-
ing cytosine levels in the host. However, the current lit-
erature is limited in this direction, necessitating detailed 
investigation to clarify its role. The discovery of cyto-
sine levels as a mediating metabolite in the relationship 
between FamilyXI and EC provides a new perspective 
for understanding the complex interactions between GM 
and cancer and further suggests that there may be differ-
ent patterns of association between microbiota and can-
cer risk in different studies. Further in-depth research is 
needed to elucidate the reasons and mechanisms behind 
these differences.

Over the past five years, microbial therapy has emerged 
as a treatment approach that is different from traditional 
anti-cancer treatments, with potential benefits in the 
treatment of diseases [81]. A previous animal experiment 
revealed that overexpression of β-glucuronidase and 
glycyrrhetinic acid in Escherichia coli for targeted ther-
apy in colon cancer mice exhibited a great tumor sup-
pression rate and low toxicity [82]. Zhang et al. [83]. also 
pointed out that liposomal paclitaxels encapsulated in 
electroporated Escherichia coli or Lactobacillus planta-
rum formed LP-in-E. coli or LP-in-L. casei, which, when 
administered by inhalation, accumulates in the lungs 
and effectively combats cancer with fewer side effects. In 
addition, a study has designed a non-pathogenic Esch-
erichia coli that can specifically lyse in the tumor micro-
environment and generate a nano antagonist targeting 
CD47, which can activate tumor-infiltrating T cells, acti-
vate rapid tumor regression, and prevent tumor metasta-
sis [84]. Engineered bacteria can be utilized for safe and 
local delivery of the payload of immunotherapy, thereby 
achieving systemic anti-tumor immunity. GM is both a 
driver of cancer and a potential therapeutic target. How-
ever, given the intricate connection between treatment 
modalities, GM, and cancer, more studies are needed 
to elucidate specific GM and mechanisms in individual 
cancers, which may facilitate the advancement of clinical 
translation.

This study utilized the MR analysis to effectively reduce 
confounding bias, thereby more accurately determining 
the causal relationship between GM and OC/EC. Com-
pared to traditional observational studies, MR analysis 
uses genetic variation as IVs to simulate RCTs, reducing 
the influence of reverse causality and confounding fac-
tors, and thereby improving the credibility of results. Our 
study provided new insights into the prevention, diagno-
sis, and treatment of OC/EC by summarizing the clear 
microbiome profile of OC/EC. Specifically, the specific 
GM and blood metabolites associated with OC/EC risk 
were identified in this study. The work exhibited potential 
biomarkers for early diagnosis, helping to identify high-
risk populations earlier and achieve early intervention. 
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At the same time, these findings also provided a theo-
retical basis for developing therapeutic strategies based 
on regulating the GM, such as promoting the growth of 
beneficial bacteria through probiotic preparations or 
dietary fiber supplements or reducing the abundance of 
harmful bacteria through antibiotics and other means, 
thereby curbing the development of tumors. In addition, 
this study guided the development of prevention strate-
gies in OC/EC, emphasizing the importance of adjusting 
dietary structure and avoiding disruption of GM balance. 
In summary, this study is not only innovative in method-
ology but also has important guiding significance in the 
clinical application. It can open up new ideas and direc-
tions for the prevention and treatment of OC/EC in the 
future.

This work shares similar limitations with most current 
MR studies. Firstly, GM’s GWAS data mainly represent 
individuals of European ancestry, with considerably lim-
ited data on non-European ancestry, which may limit the 
applicability of results to other races and populations. 
There are significant differences among different races 
in terms of genetic background, lifestyle, and environ-
mental factors, which may affect the composition and 
function of GM and thus affect its association with OC/
EC. Therefore, caution should be exercised when extend-
ing the conclusions of this study to other races. It is rec-
ommended that future studies include more data from 
different races to more comprehensively reveal the dif-
ferences and commonalities in the relationship between 
GM and these diseases. Secondly, since the lowest clas-
sification level for exposure data is at the genus level, a 
more detailed causal analysis at the species or strain level 
was conducted. This may lead to our inability to identify 
the specific impact of specific species or strains on OC/
EC risk, thereby limiting our in-depth understanding of 
the relationship between GM and cancer. Lastly, there is 
considerable variation in sample collection and manage-
ment due to the lack of a standardized GM measurement 
method and criteria in current studies. The differences in 
sequencing platforms and analysis methods used in dif-
ferent studies may lead to inconsistent and incomparable 
results, which may affect the accuracy and reliability of 
the relationship between GM and OC/EC, as well as the 
comparison and validation with other research results.

Conclusion
Our investigation summarized 9 GMs with causal effects 
on OC from genetic analysis, among which 4 may be 
pathogenic risk factors, while the other 5 may reduce the 
risk of OC. There are 4 pathogenic GMs and 3 beneficial 
bacteria for EC. Furthermore, OC/EC also alters the com-
position of GM. Among them, a significant bidirectional 
causal relationship is detected between the FamilyXII-
IAD3011group and OC, and the level of cytosine is found 

to be a significant intermediate metabolite between the 
two, providing valuable insights for the subsequent GM-
mediated pathogenic mechanisms of OC and the devel-
opment of preventive and therapeutic strategies for the 
disease.
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