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Abstract 

Background  Epithelial ovarian cancer (EOC) is a deadly and heterogenous disease comprising five major histo‑
types: clear cell carcinoma (CCC), endometrioid carcinoma (EC), low- and high-grade serous carcinoma (LGSC, HGSC), 
and mucinous carcinoma (MC). Despite this heterogeneity, EOC is often treated as a homogenous disease, and reli‑
able screening tests are lacking. Although progress has been made, there is a pressing need for biomarkers to refine 
patient stratification, guide treatment, and improve outcomes. Here, we elucidated the relationship between DNA 
methylation and gene expression patterns in EOC to identify histotype-specific biomarkers.

Methods  Differential DNA methylation and gene expression analyses were performed for 86 early-stage EOC 
samples after histopathological reclassification stratified by histotype. The correlation between DNA methylation 
and gene expression was examined, and histotype-specific biomarkers were identified. Hierarchical clustering 
and predictive machine learning modeling were employed to assess the performance of the histotype-specific bio‑
markers using four external cohorts.

Results  EOC histotypes exhibited distinct epigenetic, transcriptional, and functional profiles, with candidate histo‑
type-specific biomarkers such as CTSE and VCAN effectively distinguishing CCC, HGSC, and MC on the transcriptional 
level. Gene expression for the candidate biomarkers was found to be reproducible across external cohorts, with histo‑
type-specific differences remaining homogenous.

Conclusions  This study identified promising histotype-specific biomarkers for EOC using integrative transcriptomic 
and epigenomic analysis. Furthermore, these findings indicate that additional stratification or potential reclassification 
of the EC histotype is warranted in future studies.
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Introduction
Ovarian cancer (OC) is an aggressive and heterogenous 
disease, ranking among the most lethal cancer types 
affecting women worldwide. Although OC only accounts 
for about 2% of female cancers, it is responsible for 
approximately 20% of cancer-related deaths in women [1, 
2]. Survival rates for early-stage (stage I-II) exceed 90% 
with invasive surgery and platinum-based chemotherapy. 
However, early-stage disease is often asymptomatic and 
effective early detection methods are lacking. There-
fore, many patients will be diagnosed at an advanced 
stage (stage III-IV), typically after menopause, where the 
expected survival is less than 30%. Moreover, patients 
that initially respond well to platinum-based chemother-
apy often develop resistance after initial treatment, with 
approximately 20–25% and 70% of early- and late-stage 
patients experiencing recurrence, respectively [3].

As early detection and intervention of OC is directly 
linked to patient outcome, there is an urgent need to 
develop more effective diagnostic methods for early-stage 
diagnosis [4]. Various cancer types, including OC, have 
been associated with widespread epigenetic changes, i.e., 
global hypomethylation of the cancer genome and focal 
hypermethylation of the promoter region of tumor sup-
pressor genes. Such changes take place even before car-
cinogenesis has occurred and are known to increase in 
frequency as the cancer progresses [5]. As DNA methyla-
tion is a chemically stable process present in the cell-free 
DNA of bodily fluids, DNA methylation-based biomark-
ers hold great potential for accessible tumor-based fin-
gerprinting to detect early onset OC, without the need 
for invasive surgery [6].

Malignant epithelial ovarian cancers (EOC), represent-
ing 90% of OC cases, are further stratified into five his-
tological subtypes: High-grade serous carcinoma (HGSC, 
70%), low-grade serous carcinoma (LGSC, 5%), clear cell 
carcinoma (CCC, 10%), endometrioid carcinoma (EC, 
10%), and mucinous carcinoma (MC, 3%). Each histo-
type showcases distinct methylation patterns, biological 
characteristics, incidence rates, morphology, and clinical 
outcome. Therefore, an accurate stratification of the EOC 
histotypes could guide treatment decisions and improve 
patient outcome [7]. Recent efforts in OC biomarker dis-
covery have identified well-established markers such as 
the genes BRCA1/2, HE4 and the protein CA125  [8, 9]. 
However, most studies have focused on the disease as a 
single, homogenous entity, thereby failing to account 
for heterogeneity between the histotypes on a biological 
level.

Effective OC classifiers require a sensitivity > 75% 
and specificity > 99.6% to achieve a positive predictive 
value of 10% (i.e., detecting one true OC case among 
10 possible cases [10]). To overcome such stringent 

requirements, diagnostic models consisting of multiple 
individual genetic markers can be constructed to further 
enhance sensitivity and specificity. Several promising his-
totype-specific biomarkers have been proposed for EOC, 
including WT-1 and p53 for HGSC, MUC5AC for MC 
or ARID1A and Napsin A for CCC [11–13]. Despite this, 
to date no comprehensive and reliable gene panels exist 
for EOC histotype stratification, highlighting the need 
for histotype-specific genetic markers to enhance clas-
sification at transcriptional or epigenetic levels. The aim 
of the study was to (1) evaluate the relationship between 
differential DNA methylation and gene expression, and 
(2) identify potential candidate histotype-specific bio-
markers on either an epigenetic or transcriptional level. 
For this purpose, transcriptional and DNA methylation 
profiles for 86 early-stage EOCs were studied, followed 
by validation using external EOC cohorts.

Methods
Patient cohorts and data acquisition
To investigate epigenetic and transcriptional differences 
between EOC histotypes in early-stage (stage I-II) ovar-
ian carcinoma, 96 cases from a prior study (GSE101109/
Training cohort [14]) were reclassified by board-certified 
pathologists at Sahlgrenska University Hospital (Gothen-
burg, Sweden) using formalin-fixed, paraffin-embedded 
(FFPE) sections. The reclassification followed the 2020 
World Health Organization (WHO) and International 
Federation of Gynecology and Obstetrics (FIGO) OC 
histological classification guidelines [15]. Samples with 
matching RNA sequencing (RNA-seq.fastq files), DNA 
methylation data (.idat files), and clinical data corre-
sponding to the four main EOC histotypes, i.e., HGSC (n 
= 45), MC (n = 7), EC (n = 21), and CCC (n = 13; Tables 1 
and 2) were included in the training cohort. Samples of 
the LGSC histotype were excluded from analysis due to 
their low prevalence (n = 2).

Four external RNA expression datasets (Test cohorts: 
GSE2109, GSE6008, GSE44104, E-MTAB-1814 [16–18] 
of mixed EOC sample grade and stage, each contain-
ing at least 10 samples across 3/4 EOC histotypes in the 
training cohort were retrieved from the Gene Expression 
Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/) or 
ArrayExpress (https://​www.​ebi.​ac.​uk/​biost​udies/​array​
expre​ss) using the GEOquery (v.2.70 [19]) and ArrayEx-
press (v.2.9.0 [20]) packages in R/Bioconductor (v.4.3.0). 
Phenotypic annotations for test cohort datasets were 
retrieved using the MetaGxOvarian package (v.1.22.0 
[21]). Datasets originating from the Affymetrix platform 
had their raw data files (.CEL) processed through the affy 
R package [22]. Processed data was normalized through 
the RMA algorithm (quantile normalisation) and control 
probes together with probes showing low intensity were 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.ebi.ac.uk/biostudies/arrayexpress
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removed before analysis. Datasets originating from the 
Agilent platform had their raw data processed through 
limma, where they were subjected to background correc-
tion followed by quantile normalization, removal of con-
trol probes together with low intensity probes, and the 
averaging of array replicate probes. Samples in dataset 
GSE2109 were reclassified according to the same FIGO 
guidelines used for the training cohort, whereas the other 

external datasets which use the 2014 FIGO classification 
had the “serous” histotype reclassified through deeming 
serous samples of grade 1 as LGSC, and serous samples 
of grade 2–3 as HGSC [23]. Any LGSC (serous grade 
1) samples were removed from analysis. Finally, follow-
ing PCA analysis, 6 samples were removed from dataset 
E-MTAB-1814 due to abnormal expression patterns (Fig. 
S1).

Table 1  Training and test cohort histotype and platform characteristics

CCC​ Clear cell carcinoma, EC Endometrioid carcinoma, HGSC High-grade serous carcinoma, MC Mucinous carcinoma

The platforms used across cohorts highlight differences in data acquisition methods, which were accounted for in the analyses

Cohort name Accession ID CCC​ EC HGSC MC Year of 
publication

Platform

Training GSE101109 13 21 45 7 2018 Illumina Hiseq2500 (SCR_016383)

Test GSE2109 12 28 31 8 2005 Affymetrix Human Genome U133 Plus 2.0 Array

GSE6008 8 37 39 13 2007 Affymetrix Human Genome U133 A 2.0 Array

GSE44104 12 11 28 9 2014 Affymetrix Human Genome U133 Plus 2.0 Array

E-MTAB-1814 17 19 16 15 2014 Agilent SurePrint G3 GE 8 × 60 k (A-GEOD-16083)

Table 2  Clinicopathological features of the training cohort, stratified by histotype (n = 86)

Table shows n (% of total rounded up to one decimal point). CCC​ clear cell carcinoma; EC endometrioid carcinoma; HGSC high-grade serous carcinoma; MC mucinous 
carcinoma

Characteristic All
(n = 86)

HGSC
(n = 45)

CCC​
(n = 13)

MC
(n = 7)

EC
(n = 21)

Age at diagnosis (years)

  Mean 63.8 65 62.3 61.7 62.6

  Range 25–86 38–86 42–79 39–80 25–83

Stage

  I 56 (65.1) 25 (55.6) 11 (84.6) 6 (85.7) 14 (66.7)

  II 30 (34.9) 20 (44.4) 2 (15.4) 1 (14.3) 7 (33.3)

CA125 (U/ml)

  U > 200 25 (29.1) 14 (31.1) 4 (30.8) 0 7 (33.3)

  200 > U > 35 36 (41.9) 23 (51.1) 4 (30.8) 2 (28.6) 7 (33.3)

  U < 35 25 (29.1) 8 (17.8) 5 (38.5) 5 (71.4) 7 (33.3)

Survival time (days)

  Mean 2732.9 2377.7 3135.5 2621.4 3282.0

  Range 226–6473 239–5335 226–6473 366–5065 665–5576

Cause of death

  EOC 43 (50.0) 30 (66.7) 8 (61.5) 1 (14.3) 4 (19.1)

  Other cancer 6 (7.0) 3 (6.7) 0 1 (14.3) 2 (9.5)

  Other 26 (32.6) 9 (20.0) 5 (38.5.0) 4 (57.1) 8 (38.1)

  Alive 11 (12.8) 3 (6.7) 0 1 (14.3) 7 (33.3)

Relapse

  Yes 31 (36.0) 17 (37.8) 4 (30.8) 4 (57.1) 6 (28.6)

  Not Available 55 (64.0) 28 (62.2) 9 (69.2) 3 (42.9) 15 (71.4)

Adjuvant chemotherapy

  Platinum single 52 (60.5) 26 (57.8) 7 (53.9) 6 (85.7) 14 (66.7)

  Platinum Combination 25 (29) 12 (26.7) 6 (46.2) 0 7 (33.3)

  Non-platinum 8 (9.3) 7 (15.6) 0 1 (14.3) 0
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RNA‑seq quality control and read alignment
Computations using SNIC SENS resources were per-
formed via the Uppsala Multidisciplinary Center for 
Advanced Computational Science (UPPMAX project ID 
sens2022542). Training cohort raw sequencing data files 
(.fastq) underwent adapter and quality trimming with 
the bbduk tool of the BBtools suite (BBtools v.38.08 [24]), 
quality assessment with FastQC (v.0.11.9 [25]) and sum-
mary compilation using MultiQC (v.1.12 [26]). Trimmed 
reads were aligned to the hg38 human reference genome 
(GRCh38.p13) with Ensembl genome annotation (Homo.
sapiens.GRCh38.108) using the STAR RNA-seq aligner 
(v.2.7.9a [27]). Aligned samples were aggregated and 
assessed via MultiQC. Raw read counts were then 
obtained using the featureCounts tool of the subread 
package (subread v.2.0.0 [28]).

Differential gene expression analysis
Differential gene expression (DGE) analysis was per-
formed using R. For the training cohort, DESeq2 (v.1.40.1 
[29]) was used to identify differentially expressed genes 
(DEGs) between the different histotypes. Lowly expressed 
genes were removed (n ≤7 samples with n ≤5 counts) 
and remaining data were subjected to variance stabilizing 
transformation. Genes were considered significant if they 
had a false discovery rate (FDR; Benjamini-Hochberg) 
adjusted  p-value < 0.05 and absolute log2 Fold  Change 
(FC) > 1.0 for histotype group comparisons. Genes with-
out a corresponding Hugo Gene Nomenclature Commit-
tee (HGNC) symbol were excluded. Additionally, DEGs 
showing significant differential expression for a histotype 
compared to all other histotypes (e.g., for CCC: CCC-EC, 
CCC-HGSC, CCC-MC) were termed histotype-specific 
genes (HSGs). Performance was corroborated by jacknif-
ing [30] for histotype group comparisons involving the 
smallest histotype group (MC) as reference.

Functional annotation and oncogenic potential
Functional enrichment was performed for significant 
DEGs using goseq (v1.5.4 [31]) and biomaRt (v.2.58.2 
[32]) for biological processes, and resulting gene ontology 
(GO) terms were subjected to multiple correction testing 
(overrepresented p-value; FDR). Significantly enriched 
GO-terms (adjusted p-value < 0.05) found in 2/3 possi-
ble DEG comparisons for a histotype were used as input 
for rrvgo (v.1.14.2 [33]) to identify parent GO terms. To 
evaluate the oncogenic potential of HSGs, the R pack-
age OncoScore (v.1.30.0 [34]) was applied to HSGs with 
HGNC symbols.

Predictive modeling
Sample-level gene expression (log2(n+ 1) trans-
formed counts) was used as predictors, with histotype 

classification as the response variable. Genes were chosen 
as predictor genes (PGs) for a histotype if they showed 
significant DGE in the training cohort for 2/3 compari-
sons when using the histotype of interest as reference. 
Optimal parameters for a XGBoost (XGB) model based 
on the training cohort were obtained through sequential 
grid search using the caret package (v.7.0–1 [35]) and fea-
ture selection was performed with the Boruta package 
(v.8.0.0 [36]). Selected features (PGs) for each histotype 
in the training cohort were combined into one feature-
set, and for each dataset in the test cohort a fivefold 
cross-validation was conducted and repeated 100 times 
for a XGB classifier using test cohort data with optimal 
parameters and features for the training cohort. Binary 
(one vs. rest) classification models were constructed by 
defining the PG-associated histotype as one class (case), 
and all other histotypes as the second class (control), 
with feature selection, parameter optimization and cross 
validation performed through the same methodology as 
for the multiclass classification. Binary classification was 
then repeated for HSGs to evaluate differences in predic-
tive performance.

External DEG validation
The test cohort datasets were filtered to contain only 
samples associated with the 4 histotypes in the training 
cohort. Affymetrix microarray probes were annotated 
with affycoretools (v1.44.2 [37]) and Agilent microar-
ray data with biomaRt. DGE analysis was performed for 
each dataset in the test cohort using limma (v.3.58.1 [38]) 
for each possible histotype comparison. Probes map-
ping to a gene were deemed significant for FDR < 0.05, 
absolute log2 FC > 0.585, and genes mapping to multi-
ple probes were assigned to the probe with the lowest 
adjusted p-value.

Differential methylation analysis
Training cohort DNA methylation microarray data was 
processed using the minfi package (v.1.48.0 [39]) and 
annotated by the Infinium MethylationEPIC v1.0 B5 
Manifest File. Cross-reactive probes identified by the 
maxprobes package (v.0.0.2 [40]) as well as probes (1) with 
a detection p-value > 0.01, (2) a conversion rate < 80%, (3) 
overlapping SNP sites, (4) on the Y chromosome, and (5) 
with a beadcount < 5% were removed. Remaining probes 
were converted into beta-values (β) using minfi and fil-
tered through the ChAMP package (v.2.32.0 [41]) champ.
filter function (default parameters). Beta values for the 
remaining probes (n = 685,650) were normalized by 
Noob (minfi), followed by BMIQ (ChAMP). Differentially 
methylated probes (DMP) analysis was performed using 
ChAMP for each possible histotype group comparison. 
Probes were considered significant if they had Δβ > 0.2 
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and an adjusted p-value < 0.05. CpG sites were classified 
as hypermethylated when 0.7 < β-intensity, hemimeth-
ylated when 0.3 < β < 0.7, and hypomethylated when β < 
0.3. Differentially methylated region (DMR) analysis was 
performed with the DMRcate (v.2.16.1 [42]) package 
pipeline for each possible histotype group comparison. 
Regions with adjusted p-value < 0.05, Δβ > 0.2 and n ≥ 5 
overlapping CpG sites were deemed significant.

Copy number analysis
Copy number aberrations (CNA) analysis was performed 
using methylation signal-intensity data with the conumee 
package (v.1.36.0 [43]). Sample-level segments and bins 
(50,000 bp region overlapping n > 15 CpG sites) were 
aggregated for each histotype group comparison. Bins 
exhibiting copy number aberrations across all histotype 
group comparisons for a specific histotype were compiled 
as histotype-specific bins. Conumee segment-results 
were then used as input for GISTIC2 (parameters: -conf_
level 90, -genegistic, -ta 0.2 -td 0.2; v.2.0.23 [44]). Regions 
with FDR < 0.05 present in 25% or more of samples were 
deemed significant. Significant regions were compared to 
hg19 HSG coordinates (as the EPIC v1.0 array annotation 
maps to hg19) to assess associations between aberrant 
gene expression and focal/broad CNAs.

Correlation between DNA methylation and RNA expression
DMPs and DMRs were remapped to hg38 coordinates 
using the Infinium MethylationEPIC v1.0 B5 Manifest 
file. Additionally, probes were categorized as mapping 
to opensea, gene-body or to the promoter region (2000 
bp upstream, 50 bp downstream of transcriptional start 
site (TSS)). DNA methylation (β) was considered lin-
early correlated with gene expression if a probe over-
lapping a DEG was hypomethylated with a positive log2 
FC (hypo-up), or hypermethylated with a negative log2 
FC (hyper-down). DMR-DEG and DMP-DEG overlaps 
were categorized into four groups (hypo-up, hypo-down, 
hyper-up, hyper-down) according to the direction of Δβ 
for DMRs and log2 FC for DEGs. For CpG sites overlap-
ping a DEG, sample-level CpG site β values were corre-
lated to sample-level log2 counts. Genes with a Pearson 

correlation coefficient < −0.5 and adjusted p-value < 0.05 
(Benjamini-Hochberg) were deemed significant.

Results
Patient and tumor characteristics
After histopathological reclassification, histotype 
changes were observed in 11/96 early-stage EOC sam-
ples (Fig. 1). In total, 90/96 reclassified EOC samples had 
matching DNA methylation data, of which 86 belonged 
to one of the four primary histotypes CCC, EC, HGSC, 
and MC. The mean age at diagnosis was 64 years (range; 
25–86 years), with no substantial differences between the 
histotypes (Table  2). Only HGSC showed a near-equal 
distribution between stage I (n = 25) and stage II (n = 20), 
whereas the majority of CCC and MC samples were stage 
I (~ 85%). As expected, patients with stage I disease had 
higher 5-year survival rates (68%) than those with stage 
II disease (53%). With CCC exhibiting the highest 5-year 
survival rate (82%), followed by EC (71%) among stage I 
and II patients (Table S1).

Differential gene expression analysis by histotype 
in the training cohort
After reclassifying the 86 EOC samples, we then con-
ducted DGE analysis to identify histotype-specific 
molecular profiles. The highest number of DEGs was 
found between HGSC and CCC (n = 1314), and the low-
est between EC and HGSC (n = 119; Table  S2, Fig. S2). 
DEGs for HGSC were predominantly downregulated, 
whereas CCC exhibited predominantly upregulation 
compared to the other histotypes. In total, 655 PGs were 
found for CCC, 46 for EC, 224 for HGSC, and 325 for 
MC. CCC had the highest number of HSGs (n = 167), 
whereas EC had none (Table  S3). HSGs for MC and 
CCC were predominantly upregulated, whereas those for 
HGSC showed mixed expression profiles (Fig. S3). Jack-
knifing revealed that DEG results were consistent for the 
removal of non-MC samples, and relatively consistent for 
MC samples except for one MC sample (Table S4).

Fig. 1  Reclassification of histotype for the training cohort and distinct epigenetic and transcriptional patterns in EOC by histotype. The figure 
illustrates the reclassification of the training cohort, and the epigenetic and transcriptional heterogeneity observed among EOC histotypes, 
except for EC which exhibits homogeneity. A Sankey diagram depicting the reclassification of EOC samples. B Principal component analysis (PCA) 
plot showing the top 500 most variable CPG site probes and (C) genes. Heatmap with hierarchical clustering (Euclidian distance, Ward.D2 clustering 
criterion) for the top 500 most (D) variable CpG probes and (E) genes. CCC​: Clear cell carcinoma, EC: Endometrioid carcinoma, LGSC: Low-grade 
serous carcinoma, HGSC: High-grade serous carcinoma, MC: Mucinous carcinoma, MMMT:M alignant mixed Müllerian tumor, Z-Score: Statistical 
measure representing a value’s relative position in relation to the mean of its group, EOC: Epithelial ovarian cancer

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Functional annotation in the training cohort 
and oncogenic potential
GO analysis of DEGs revealed enriched biological pro-
cesses (BP) present in multiple comparisons: DEGs 
for CCC were mainly involved in tissue development, 
metabolic processes (diterpenoid, retinoid, hormone), 
and multicellular processes. EC was primarily involved 
in metabolic processes (terpenoid, monocarboxylic, 
oxoacid and organic and hormone). HGSC was primar-
ily involved in glucuronidation (cellular, flavonoid), meta-
bolic processes (retinoid, nitrogen cycle), and hormonal 
regulation. MC was mainly involved in digestion, meta-
bolic processes (lipid, oxoacid, alcohol, nitrogen cycle), 
microvillus regulation (length, organization) and lipid 
transport (Fig. S4).

Oncoscore analysis was applied to HSGs with HGNC 
symbols for CCC, HGSC, and MC. In total, 58/116 CCC, 
17/19 HGSC, and 45/88 MC HSGs with a HGNC sym-
bol passed the cut-off threshold (OncoScore ≥ 21.09; 
Table  S5 - 7; Oncoscore: Relative measurement of arti-
cles mentioning a gene and cancer, to the total number of 
articles mentioning a gene) indicating an association with 
cancer based on existing literature. Additionally, 18 CCC, 
5 HGSC and 12 MC HSGs had OncoScore > 50, among 
these were candidate cancer biomarkers such as RNA-
SET2 for CCC, AKR1B10 for HGSC, and KRT20 for MC.

Several gene families associated with cancer were 
found among HSGs. The solute carrier (SLC) gene family 
was identified as a key family of HSGs for CCC (n = 5), 
and to a lesser extent in MC (n = 2). Similarly, members 
of the mucin (MUC) gene family members (n = 3), known 
for their role known role as genetic markers in EOC, 
were identified as HSGs for MC. Members of the UGT1A 
family (UGT1A1, UGT1A3, UGT1A6, UGT1A9, and 
UGT1A10) were downregulated HSGs for HGSC, a trend 
that was consistent with DEG results in the test cohort.

Predictive classification
Out of 40,570 genes in the training cohort with a cor-
responding gene symbol, external cohort gene coverage 
ranged between 32–57% of training cohort genes after 
preprocessing, filtering and annotation steps were car-
ried out (Table  S8). Multiclass predictive classification 
classified all histotypes with ~ 70% or higher sensitivity 
> 70% specificity and > 70% AUC in all test cohort data-
sets except for GSE2109, which performed worse for all 
histotypes. Multiclass feature panels varied in number of 
selected features due to coverage in the test cohort data-
sets, and consisted of 10–11 genes for CCC, 19-21 genes 
for EC. 21–24 genes for HGSC, and 11–15 genes for MC 
(Table  S9). Out of the total 122 unique features found 

in all models, 30 were identified as HSGs in the training 
cohort. Binary models for all the test cohort datasets had 
mean sensitivity > 50%, mean specificity > 70%, and mean 
AUC > 70%. Binary models for HSGs showed similar pre-
dictive performance and number of features to binary 
models for PGs (Table S10 - 11).

External DEG analysis and validation
Hierarchical clustering paired with bootstrapping of 
expression data for HSGs revealed that MC and CCC 
more consistently formed separate clusters using HSGs 
compared to clustering by the most variable genes, 
whereas HGSC and EC samples showed similar expres-
sion profiles for HSGs for HGSC. Additionally, HSGs for 
MC and CCC were overexpressed relative to the other 
histotypes in datasets from the test cohort (Fig.  2, Fig. 
S5 - 13). HSGs were validated using external test cohort 
DEG results (Table  S12). In total, 46/96 HSGs for MC, 
39/167 HSGs for CCC, and 14/20 HSGs for HGSC were 
deemed DEGs in half or more test cohort datasets for 
comparisons with their associated histotype as reference, 
including 26/30 HSGs used in multiclass predictive mod-
els (Table S13 - 16).

Differential methylation analysis
Differential methylation analysis of the training cohort 
histotypes showed that the HGSC-MC comparison 
yielded the highest number of DMPs (n  = 38350) and 
DMRs (n = 772), while the MC-EC and HGSC-EC com-
parisons yielded the least number of DMPs (n  = 327) 
and DMRs (n  = 108), respectively (Table  S17, Fig. S14 
- 15). DMPs were primarily located in the gene-body and 
non-coding regions of the genome for all histotype com-
parisons, with probes overlapping the promoter region 
of a gene accounting for roughly 10% of DMPs. Similar 
to the results from the DEG analysis, MC and CCC were 
found to be the most heterogeneous with respect to the 
other histotypes. Moreover, CCC was shown to be com-
paratively hypermethylated, while MC was primarily 
hypomethylated (Fig. 3, Fig. S16 - 19). No chromosomal 
regions associated with DMPs or DMRs were overrepre-
sented for the different histotypes. However, histotype-
specific DMRs were found to be primarily located on 
chromosomes 4 (4/35 DMRs) and 12 (4/35) for CCC, 
chromosome 7 for HGSC (5/31) and chromosomes 1 
(10/49), 10 (5/49), and 5 (5/49) for MC.

Copy number analysis
Aggregation of sample-level CNA bins (50000 bp) 
revealed that HGSC had more bins showing gain or loss 
with a sample frequency > 30% compared to the other 
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histotypes (Fig S20 - 23). Aberrant genomic regions (with 
respect to the other histotypes) identified by GISTIC 2.0 
showed that CCC had no significant (frequency > 25%, 
FDR < 0.05) CNA regions compared to HGSC and EC, 
but had gains spanning chromosomes 20 and 17 when 

compared to MC. EC predominantly had genomic gains 
spanning chromosomes 1, 7, and 18 for all comparisons, 
while MC showed genomic losses spanning chromo-
somes 17, 8, and 6 for all histotype comparisons. HGSC 
showed a mixed profile with primarily losses across 

Fig. 2  Hierarchical clustering of histotype-specific genes (HSGs) in the GSE44104 test cohort dataset and boxplots displaying expression for HSGs 
in the training cohort. A Heatmaps and hierarchical clustering (Euclidian distance, Ward.D2 clustering criterion) of expression data for 287 probes 
mapping to 145 HSGs: (left) HSGs with mapping probes in GSE44104, (right) the 287 most variable probes in GSE44104. Color mapping indicates 
z-score for gene expression, with genes and samples clustered separately. B-D Boxplots illustrating aberrant gene expression patterns (log2 
normalized counts) in the training cohort for the top 4 HSGs for (B) CCC, (C) HGSC, and (D) MC showing between-group variance in expression. 
Values above boxplots represent Wilcoxon test p-values. CCC​: Clear cell carcinoma, EC: Endometrioid carcinoma, HGSC: High-grade serous 
carcinoma, MC: Mucinous carcinoma, Z-Score: Relative measurement of a value in relation to the mean of a group of values to which it belongs, 
Gene-coverage: The number of HSGs with a matching probe in the dataset relative to the total number of HSGs
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the genome. Additionally, CNAs spanning chromo-
somes 18, 17, 3, 20, and 13 were identified at a notice-
ably higher frequency for all histotype comparisons. For 
HGSC and CCC, DEGs overlapping significant CNA 
regions identified by GISTIC were predominantly copy 

number loss-downregulation (Table  S18-19, Fig. S24-
27). Amongst these genes were HSGs such as VCAN 
when HGSC was compared to CCC (11 HSGs for CCC, 
3 for HGSC) and KRT20 when HGSC was compared to 
MC (12 HSGs for MC, 1 for HGSC). For EC, overlapping 
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DEGs displayed copy number loss-upregulation when 
compared to MC, while MC had no DEGs overlapping 
significant regions for matching histotype comparisons.

Integrated transcriptomics and DNA methylation analysis
DMPs overlapping DEG genomic coordinates were found 
to primarily overlap with the gene body, a pattern also 
observed for HSGs. However, the number of DMP-gene 
overlaps varied across individual genes (ranging from 1 
to 8 overlapping DMPs), with the highest number found 
for CSGALNACT1 (n  = 8). DEGs with multiple DMP 
sites displayed a mixed profile of methylation and expres-
sion (hypo-up, hyper-down, hypo-down, hyper-up). 
Generally, DMPs in the gene body and promoter region 
exhibited inverse methylation patterns to one another.

Although only a small fraction of DMPs in the histo-
type comparisons overlapped HSGs (n  < 0.5%), many 
HSGs contained at least one DMP site within either the 
gene-body or promoter region (n = 0–45%). Moreover, 
the proportion of HSG-DMP site overlaps was consist-
ently higher than the proportion of DEG-DMP overlaps 
across all histotype comparisons (Table S20). Few DEGs 
overlapped with DMRs in the same histotype group com-
parisons, with the highest number of overlaps found in 
the CCC and MC comparison (n = 57, 17.4% total DMRs, 
6.9% total DEGs). The largest number of HSG-DMR 
overlaps occurred between HGSC and MC (n = 13, 1.7% 
total DMRs, 12.1% total HSGs for HGSC, MC). Overall, 
histotype comparisons involving MC exhibited the high-
est number of HSGs overlapping DMRs (Table S21).

Correlation analysis of DNA methylation (β-values) 
for CpG sites overlapping HSG genomic coordinates 
with sample-level normalized log2(n + 1)-scaled counts 
showed that CCC had the highest number of HSGs (n 
= 20) with significantly correlated CpG sites in the pro-
moter region (e.g., CLDN18 and CDHR5). HSGs with 
n ≥ 1 significantly correlated CpG sites in the promoter 
region predominantly showed a negative correlation 
between gene expression and DNA methylation across 
the entire promoter region, in contrast, the gene body 
exhibited both positive and negative correlation (Fig.  4, 
Fig. S28 - 29; Table S22).

Discussion
To investigate differences between EOC histotypes on 
the epigenetic and transcriptional levels, we performed 
a comprehensive analysis of RNA expression and DNA 
methylation data for 86 early-stage EOCs reclassified 
using FFPE sections and stratified by histotype. For the 
training cohort, a comparison between the DEG and 
DMP/DMR results before and after histotype reclassifi-
cation (using the same pipeline and parameters) revealed 
an increase in the number of DEGs in all histotype 

comparisons (18–62% more DEGs after reclassification). 
Significant DMPs and DMRs also increased after reclassi-
fication except for the HGSC-EC comparison, suggesting 
reclassification led to improved separation of the histo-
type groups at both an epigenetic and transcriptional 
level in the training cohort. Integrated DGE and differ-
ential methylation analyses in the training cohort dem-
onstrated that most EOC histotypes exhibited distinct 
heterogeneity on both an epigenetic and transcriptional 
level. Genes differentially expressed for one histotype 
compared to others in the training cohort were found 
to have a higher number of epigenetic aberrations in the 
promoter region compared to other DEGs. And success-
fully stratified histotypes through both hierarchical clus-
tering and predictive classification in external cohorts. 
With subsequent DGE analysis revealing reproducibility 
in expression patterns across external cohorts.

For the training cohort, EC displayed homogeneity with 
MC for DNA methylation and with HGSC and MC for 
RNA expression. MC was characterized by hypometh-
ylation and overexpression compared to the other histo-
types in the training cohort, except for CCC, and showed 
similar expression patterns in the test cohort datasets. 
DEG results for comparisons involving EC showed the 
most variation across the training and test cohort data-
sets. This pattern was also seen in the PCA plots for 
the training and test cohorts, where EC had the highest 
degree of within-group heterogeneity in both the train-
ing and test cohorts, and EC samples were often found 
in clusters containing other histotypes. HGSC was found 
to have the highest mortality attributed to OC (66.7%), 
potentially reflecting its more aggressive clinical behav-
ior compared to the other histotypes. DEGs for HGSC 
were found to be downregulated in both the training 
and test cohort datasets, and HSGs for HGSC included 
genes either directly or indirectly associated with tumor 
suppression such as RASSF6 and AKR1B10 through its 
interaction with p53 [45, 46]. This raises the question of 
whether the aggressive clinical behavior for HGSC is in 
part due to the relative downregulation of genes involved 
in tumor suppression.

Oncogenic assessment using Oncoscore confirmed 
that several HSGs identified in our analyses have an 
established association with cancer in the existing litera-
ture. While most of these genes have been linked to OC 
or cancer more broadly, specific associations with EOC 
histotypes were rare [47, 48]. Further literature review of 
HSGs revealed that many belong to gene families previ-
ously associated with carcinogenesis and/or EOC, includ-
ing ARID, CLDN, MUC, KLK, and SLC. CCC exhibited a 
relatively high number of HSGs from the SLC gene fam-
ily, while MC had a higher prevalence of HSGs from the 
MUC gene family. The downregulation of several UGT1A 
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family members in HGSC is particularly interesting due 
to their established link to carcinogenesis and therapy-
induced toxicity [49, 50].

GO enrichment analysis showed that 3/4 histotypes 
had DEGs involved in the metabolic processes of ter-
penoids for > 2/3 possible histotype comparisons. In 
particular, HGSC was characterized by enriched BP in 
cellular and flavonoid glucuronidation, likely due to the 
high prevalence of differentially expressed UGT​-genes 
which are directly involved in the glycosylation of sec-
ondary metabolites. As terpenoids and flavonoids are 
known to have anti-cancer properties and UGTs are 
known to influence drug resistance and cancer progres-
sion [51, 52]. The aberrant expression of genes involved 
in glucuronidation, and the metabolism of exogenous 
compounds could potentially influence EOC carcinogen-
esis and patient response to therapy. CCC was character-
ized by BP in tissue development, and MC was found to 
have many enriched BP categories involved in lipid diges-
tion and metabolic processes, suggesting potential path-
ways driving histotype-specific tumor behavior.

Predictive classifiers created from training set PGs 
were able to stratify EOC histotypes through both binary 
and multiclass classification. Binary models showed 
similar performance for PGs and HSGs, and while only 
a select few HSG models achieved the suggested thresh-
olds for OC classifiers (sensitivity > 75%, specificity 
> 99.6%; GSE6008 for CCC & MC, GSE44104 for MC), 
all binary HSG models showcased AUC > 0.8 except for 
CCC for GSE44104. The high representation of HSGs 
in multiclass models and overall predictive performance 
for both binary and multiclass classification tasks indi-
cate that HSGs used in these models still hold potential 
for histotype stratification in EOC. Inspection of PCA 
plots for the test cohort datasets showed that EC sam-
ples clustered together with HGSC samples for HSGs, 
and that in datasets where predictive performance was 
lower for a histotype, that same histotype exhibited poor 
within-group homogeneity. Suggesting predictive perfor-
mance was partially hindered by a lack of distinguishable 
expression profiles for those samples. It remains unclear 
whether this is due to biological variability such as cell 
type purity or pathological grade, or inconsistencies in 

Fig. 4  Correlation between DNA CpG site methylation and gene expression for validated HSGs. Dots represent the Pearson correlation coefficient 
between mean methylation (β) for CpG sites overlapping HSG coordinates and gene expression (log2 normalized counts). A negative correlation 
coefficient indicates a linear association between methylation and expression (hypermethylation-downregulation, hypomethylation-upregulation). 
HSGs for (A, B) CCC and (C, D) MC. Promoter: Promoter region (2000 bp upstream of the transcriptional start site (TSS), 200 bp downstream of TSS). 
CCC​: Clear cell carcinoma, EC: Endometrioid carcinoma, HGSC: High-grade serous carcinoma, MC: Mucinous carcinoma
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histotype classification as the test cohort datasets varied 
considerably in their year of origin. Notably, histotype 
classifications of dataset GSE2109 were reclassified by 
the first author in accordance with the 2020 WHO and 
FIGO guidelines. This resulted in an increase in sensitiv-
ity for predictive modeling results in the binary classifica-
tion tasks for CCC (from 0.29 to 0.61) and MC (from 0.26 
to 0.74) compared to the histotype classifications avail-
able on GEO.

Results for the DEG analysis performed for both the 
training cohort and for the test cohorts may have seen 
the statistical outcome of the results influenced by 
the low number of samples for some groups, and the 
imbalance of the number of samples associated with a 
histotype. Similarly, classification models may have expe-
rienced overfitting due to the limited number of predic-
tors resulting from poor gene coverage, or overfitting 
due to the small number of response variables (samples). 
Another important consideration is that the test cohort 
datasets originate from different research groups, which 
implies variability in protocols for extraction, quality 
control, quantification, geographical locations, seasonal 
factors (e.g., humidity and temperature during extrac-
tion) which could all influence the data. Furthermore, 
as bulk RNA-seq offers higher sensitivity and specificity 
when compared to the microarray technologies used by 
the test-cohort datasets [53], and many HSGs lacked a 
corresponding probe in one or more microarrays. Tech-
nical differences in the platform used to generate data 
and their corresponding gene annotation likely impacted 
external DEG analysis and predictive classification nega-
tively due to differences in resolution and missingness.

Finally, while efforts were made to homogenize the 
datasets through employing a similar bioinformati-
cal pipeline for pre-processing the data and through 
post-hoc reclassification of EOC serous samples, the 
histopathological assessment of samples in test cohort 
datasets remain unknown to us and could influence the 
statistical outcome of the analysis due to differences in 
the classification guidelines used. Taken together, the 
influence of such confounding factors on the results can-
not be easily dismissed [54]. Larger datasets with higher 
resolution, greater gene annotation coverage, consistent 
protocols for data generation and an even distribution of 
EOC histotype samples could in theory improve the sta-
tistical validity of the findings presented in the study, but 
to our knowledge, such a cohort does not exist in publicly 
available repositories.

To evaluate whether HSG expression patterns were 
consistent in other cohorts, hierarchal clustering and 
external DEG analysis was conducted. Hierarchical clus-
tering revealed that HSGs could more effectively distin-
guish between histotype groups compared to clustering 

based on the most variable genes in both the training 
and test cohorts. Clusters generated using HSGs demon-
strated better separation of histotypes and higher repro-
ducibility in both the training cohort and the test cohort 
datasets. This effect was most pronounced for CCC and 
MC, as the number of HSGs for HGSC was compara-
tively low.

Most HSGs in the training cohort were classified as sig-
nificant DEGs for the same histotype comparisons in the 
test cohort datasets. Additionally, the directionality of 
the aberrant gene expression in the training dataset was 
found to be homogenous with the test cohort datasets 
for the associated histotype comparisons. Out of the 30 
HSGs found in the multiclass models (based on feature 
selection in the training cohort) 26 were found as DEGs 
in half or more of the external cohorts. With several 
HSGs such as ARID3A, RNASET2 and VCAN for CCC, 
RASSF6 and UGT1A6 for HGSC and KRT20, CDHR2,5 
and AGMAT for MC found as DEGs in more than half 
of all external DEG comparisons for its associated his-
totypes. Indicating a high degree of reproducibility for 
HSG expression across multiple datasets despite sources 
of variability, and potential as biomarkers for histotype 
stratification in EOC. HSGs that were not identified as 
DEGs in the test cohort datasets were often found to 
have the characteristics of a DEG but failed the adjusted 
p-value cutoff, or to lack mapping probes in several of the 
external cohort datasets. As paired healthy ovarian tissue 
samples were not available in the training or test cohort, 
further comparisons of HSG expression in healthy and 
cancer tissue should ideally be done to evaluate the 
potential of HSGs as potential biomarkers for both histo-
type stratification and EOC detection.

Investigation of the epigenetic landscape of EOC in 
relation to the transcriptional profiles showed that while 
few DMPs overlapped DEG genomic coordinates, a rela-
tively high proportion of DEGs corresponded to DMPs. A 
majority of overlapping DMPs were in promoter regions, 
especially for HSGs where they displayed a negative cor-
relation between DNA methylation and gene expression. 
Whereas the gene body of HSGs instead showed a mix of 
negatively and positively correlated CpG sites, the latter 
adhering to the observed relationship between methyla-
tion of the gene-body and upregulated gene-expression 
[55]. As intronic regions experience a lower intensity of 
DNA-methylation when compared to exonic regions, 
even when having comparable GC content, and the 
probes mapping to CpG sites in the Infinium EPIC array 
are not evenly distributed [56, 57]. The observed vari-
ability in correlation between gene expression and DNA 
methylation of the gene body when compared to the pro-
moter region may be due to the methylation of intragenic 
CpG rich intronic and exonic regions. The frequency of 
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DEGs and to an even higher extent HSGs overlapping 
DMPs suggest that promoter region methylation aberra-
tions may have a direct role in the dysregulation of gene 
expression in several HSGs.

Several DEGs for HGSC (and to a lesser extent for 
CCC) were located in regions with copy number losses, 
with a vast majority of these genes being downregulated. 
These observations underscore the influence of CNAs on 
DGE in HGSC, consistent with existing literature [58]. 
The relatively low sample size in the training cohort for 
all histotypes except HGSC likely limited the number 
of statistically significant regions identified by GISTIC 
(leading to the low number of DEG-CNA regions for EC 
and MC). DMRs did not overlap with DEGs as frequently 
as DMPs, likely due to the more stringent criteria for sig-
nificance for DMRs. As many genes contained relatively 
few (n < 5) overlapping CpG sites, the number of possible 
DMR/DEG overlaps was reduced.

Conclusion
Taken together, the present study demonstrates that HSG 
gene expression can be used to stratify EOC histotypes 
using both binary and multiclass predictive classifica-
tion, as well as hierarchical clustering. We further show 
that HSGs are highly represented for cancer in existing 
literature, and that their expression patterns are repro-
ducible across multiple cohorts, highlighting their poten-
tial as genetic markers for EOC histotypes. Although 
no large-scale histotype-specific relationship between 
epigenetic regulation and gene expression was observed 
for the training cohort, the negative correlation between 
promoter region methylation and gene expression identi-
fied in several HSGs suggests that epigenetic regulation 
may play a role in aberrant gene expression. Addition-
ally, some HSGs (e.g., CLDN18 and KNG1) demonstrated 
histotype specificity patterns of promoter methylation, 
indicating their potential as histotype-specific epigenetic 
biomarkers. These biomarkers could be detected on an 
epigenetic level without requiring invasive surgical pro-
cedures, warranting further investigation. Functional 
analysis and literature search suggest that genes involved 
in glucuronidation, and metabolism of exogenous com-
pounds are associated with HGSC patient outcome, with 
the UGT​ gene family being of special interest as they 
were downregulated compared to all other histotypes in 
both training and test cohorts. Finally, the high degree 
of similarity between the EC and HGSC histotype in the 
training cohort and the heterogeneity in DEG results 
for EC observed in the test-cohort raises the question of 
whether further classification of EC is needed to improve 
the accuracy of subsequent bioinformatics analysis.
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